Analytical sensitivity in topology optimization for elastoplastic composites

The present study proposes a topology optimization of composites considering elastoplastic deformation to maximize the energy absorption capacity of a structure under a prescribed material volume. The concept of a so-called multiphase material optimization , which is originally defined for a continu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2015-09, Vol.52 (3), p.507-526
Hauptverfasser: Kato, Junji, Hoshiba, Hiroya, Takase, Shinsuke, Terada, Kenjiro, Kyoya, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 526
container_issue 3
container_start_page 507
container_title Structural and multidisciplinary optimization
container_volume 52
creator Kato, Junji
Hoshiba, Hiroya
Takase, Shinsuke
Terada, Kenjiro
Kyoya, Takashi
description The present study proposes a topology optimization of composites considering elastoplastic deformation to maximize the energy absorption capacity of a structure under a prescribed material volume. The concept of a so-called multiphase material optimization , which is originally defined for a continuous damage model, is extended to elastoplastic composites with appropriate regularization for material properties in order to regularize material parameters between two constituents. In this study, we formulate the analytical sensitivity for topology optimization considering elastoplastic deformationand its path-dependency. For optimization applying a gradient-based method, the accuracy of sensitivities iscritical to obtain a reliable optimization result. The proposed analytical sensitivity method takes the derivative of the total stress which satisfies equilibrium equation instead of that of the incremental stress and does not need implicit sensitivity terms. It is verified that the proposed method can provide highly accurate sensitivity enough to obtain reliable optimization results by comparing with that evaluated from the finite difference approach.
doi_str_mv 10.1007/s00158-015-1246-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262584632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262584632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-a40144ce264964f525ccd15f1de768d2e80a5696c214cc4a89d8c604d301dd6d3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9VJmmTT47L4Dxa8KHgLIUmXLN2mJlmhfnpTKnry8maGeb-BeQhdE7glAKu7BEC4rIpUhDJRyRO0IGKamJSnv_3q_RxdpLQHAAmsWaDtutfdmL3RHU6uTz77T59H7HucwxC6sBtxGLI_-C-dfehxGyJ2nU5lO6k32ITDEAro0iU6a3WX3NVPXaK3h_vXzVO1fXl83qy3lWGc5kozIIwZRwVrBGs55cZYwlti3UpIS50EzUUjDCXMGKZlY6URwGwNxFph6yW6me8OMXwcXcpqH46xPJIUpYJyyURNi4vMLhNDStG1aoj-oOOoCKgpNDWHpoqoKTQlC0NnJhVvv3Px7_L_0Dei4XBp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262584632</pqid></control><display><type>article</type><title>Analytical sensitivity in topology optimization for elastoplastic composites</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kato, Junji ; Hoshiba, Hiroya ; Takase, Shinsuke ; Terada, Kenjiro ; Kyoya, Takashi</creator><creatorcontrib>Kato, Junji ; Hoshiba, Hiroya ; Takase, Shinsuke ; Terada, Kenjiro ; Kyoya, Takashi</creatorcontrib><description>The present study proposes a topology optimization of composites considering elastoplastic deformation to maximize the energy absorption capacity of a structure under a prescribed material volume. The concept of a so-called multiphase material optimization , which is originally defined for a continuous damage model, is extended to elastoplastic composites with appropriate regularization for material properties in order to regularize material parameters between two constituents. In this study, we formulate the analytical sensitivity for topology optimization considering elastoplastic deformationand its path-dependency. For optimization applying a gradient-based method, the accuracy of sensitivities iscritical to obtain a reliable optimization result. The proposed analytical sensitivity method takes the derivative of the total stress which satisfies equilibrium equation instead of that of the incremental stress and does not need implicit sensitivity terms. It is verified that the proposed method can provide highly accurate sensitivity enough to obtain reliable optimization results by comparing with that evaluated from the finite difference approach.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-015-1246-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Composite materials ; Computational Mathematics and Numerical Analysis ; Damage assessment ; Deformation ; Dependence ; Elastoplasticity ; Energy absorption ; Engineering ; Engineering Design ; Equilibrium equations ; Finite difference method ; Material properties ; Order parameters ; Parameter sensitivity ; Regularization ; Research Paper ; Sensitivity analysis ; Theoretical and Applied Mechanics ; Topology optimization</subject><ispartof>Structural and multidisciplinary optimization, 2015-09, Vol.52 (3), p.507-526</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-a40144ce264964f525ccd15f1de768d2e80a5696c214cc4a89d8c604d301dd6d3</citedby><cites>FETCH-LOGICAL-c452t-a40144ce264964f525ccd15f1de768d2e80a5696c214cc4a89d8c604d301dd6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-015-1246-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-015-1246-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kato, Junji</creatorcontrib><creatorcontrib>Hoshiba, Hiroya</creatorcontrib><creatorcontrib>Takase, Shinsuke</creatorcontrib><creatorcontrib>Terada, Kenjiro</creatorcontrib><creatorcontrib>Kyoya, Takashi</creatorcontrib><title>Analytical sensitivity in topology optimization for elastoplastic composites</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>The present study proposes a topology optimization of composites considering elastoplastic deformation to maximize the energy absorption capacity of a structure under a prescribed material volume. The concept of a so-called multiphase material optimization , which is originally defined for a continuous damage model, is extended to elastoplastic composites with appropriate regularization for material properties in order to regularize material parameters between two constituents. In this study, we formulate the analytical sensitivity for topology optimization considering elastoplastic deformationand its path-dependency. For optimization applying a gradient-based method, the accuracy of sensitivities iscritical to obtain a reliable optimization result. The proposed analytical sensitivity method takes the derivative of the total stress which satisfies equilibrium equation instead of that of the incremental stress and does not need implicit sensitivity terms. It is verified that the proposed method can provide highly accurate sensitivity enough to obtain reliable optimization results by comparing with that evaluated from the finite difference approach.</description><subject>Composite materials</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Damage assessment</subject><subject>Deformation</subject><subject>Dependence</subject><subject>Elastoplasticity</subject><subject>Energy absorption</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Equilibrium equations</subject><subject>Finite difference method</subject><subject>Material properties</subject><subject>Order parameters</subject><subject>Parameter sensitivity</subject><subject>Regularization</subject><subject>Research Paper</subject><subject>Sensitivity analysis</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9VJmmTT47L4Dxa8KHgLIUmXLN2mJlmhfnpTKnry8maGeb-BeQhdE7glAKu7BEC4rIpUhDJRyRO0IGKamJSnv_3q_RxdpLQHAAmsWaDtutfdmL3RHU6uTz77T59H7HucwxC6sBtxGLI_-C-dfehxGyJ2nU5lO6k32ITDEAro0iU6a3WX3NVPXaK3h_vXzVO1fXl83qy3lWGc5kozIIwZRwVrBGs55cZYwlti3UpIS50EzUUjDCXMGKZlY6URwGwNxFph6yW6me8OMXwcXcpqH46xPJIUpYJyyURNi4vMLhNDStG1aoj-oOOoCKgpNDWHpoqoKTQlC0NnJhVvv3Px7_L_0Dei4XBp</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Kato, Junji</creator><creator>Hoshiba, Hiroya</creator><creator>Takase, Shinsuke</creator><creator>Terada, Kenjiro</creator><creator>Kyoya, Takashi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150901</creationdate><title>Analytical sensitivity in topology optimization for elastoplastic composites</title><author>Kato, Junji ; Hoshiba, Hiroya ; Takase, Shinsuke ; Terada, Kenjiro ; Kyoya, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-a40144ce264964f525ccd15f1de768d2e80a5696c214cc4a89d8c604d301dd6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Composite materials</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Damage assessment</topic><topic>Deformation</topic><topic>Dependence</topic><topic>Elastoplasticity</topic><topic>Energy absorption</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Equilibrium equations</topic><topic>Finite difference method</topic><topic>Material properties</topic><topic>Order parameters</topic><topic>Parameter sensitivity</topic><topic>Regularization</topic><topic>Research Paper</topic><topic>Sensitivity analysis</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kato, Junji</creatorcontrib><creatorcontrib>Hoshiba, Hiroya</creatorcontrib><creatorcontrib>Takase, Shinsuke</creatorcontrib><creatorcontrib>Terada, Kenjiro</creatorcontrib><creatorcontrib>Kyoya, Takashi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kato, Junji</au><au>Hoshiba, Hiroya</au><au>Takase, Shinsuke</au><au>Terada, Kenjiro</au><au>Kyoya, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical sensitivity in topology optimization for elastoplastic composites</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>52</volume><issue>3</issue><spage>507</spage><epage>526</epage><pages>507-526</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>The present study proposes a topology optimization of composites considering elastoplastic deformation to maximize the energy absorption capacity of a structure under a prescribed material volume. The concept of a so-called multiphase material optimization , which is originally defined for a continuous damage model, is extended to elastoplastic composites with appropriate regularization for material properties in order to regularize material parameters between two constituents. In this study, we formulate the analytical sensitivity for topology optimization considering elastoplastic deformationand its path-dependency. For optimization applying a gradient-based method, the accuracy of sensitivities iscritical to obtain a reliable optimization result. The proposed analytical sensitivity method takes the derivative of the total stress which satisfies equilibrium equation instead of that of the incremental stress and does not need implicit sensitivity terms. It is verified that the proposed method can provide highly accurate sensitivity enough to obtain reliable optimization results by comparing with that evaluated from the finite difference approach.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-015-1246-8</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2015-09, Vol.52 (3), p.507-526
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2262584632
source SpringerLink Journals - AutoHoldings
subjects Composite materials
Computational Mathematics and Numerical Analysis
Damage assessment
Deformation
Dependence
Elastoplasticity
Energy absorption
Engineering
Engineering Design
Equilibrium equations
Finite difference method
Material properties
Order parameters
Parameter sensitivity
Regularization
Research Paper
Sensitivity analysis
Theoretical and Applied Mechanics
Topology optimization
title Analytical sensitivity in topology optimization for elastoplastic composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20sensitivity%20in%20topology%20optimization%20for%20elastoplastic%20composites&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Kato,%20Junji&rft.date=2015-09-01&rft.volume=52&rft.issue=3&rft.spage=507&rft.epage=526&rft.pages=507-526&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-015-1246-8&rft_dat=%3Cproquest_cross%3E2262584632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262584632&rft_id=info:pmid/&rfr_iscdi=true