Application of non-probabilistic sensitivity analysis in the optimization of aeronautical hydraulic pipelines

This paper investigates the reliability design optimization of an aeronautical hydraulic pipeline system, in which the constraint locations are treated as design parameters. To reduce the size of the optimization problem, two non-probabilistic global sensitivity indices are introduced and modified t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2018-06, Vol.57 (6), p.2177-2191
Hauptverfasser: Wang, Wenxuan, Zhou, Changcong, Gao, Hangshan, Zhang, Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2191
container_issue 6
container_start_page 2177
container_title Structural and multidisciplinary optimization
container_volume 57
creator Wang, Wenxuan
Zhou, Changcong
Gao, Hangshan
Zhang, Zheng
description This paper investigates the reliability design optimization of an aeronautical hydraulic pipeline system, in which the constraint locations are treated as design parameters. To reduce the size of the optimization problem, two non-probabilistic global sensitivity indices are introduced and modified to screen out those constraint locations which have no or little effect on the optimization target. Considering the rest of constraint locations as design variables, the complexity of the optimization problem is dramatically reduced. The optimization of the pipeline systems demonstrates that the proposed method is superior to the traditional direct optimization method in both the optimization efficiency and results. This work indicates that introduction of sensitivity analysis can greatly improve the efficiency and performance of optimization, especially in those complex engineering problems involving a large number of design variables.
doi_str_mv 10.1007/s00158-017-1848-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262574148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262574148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-d3aab3925ccf7a5eb4831fc92cd33699b41a088ba62bc72a1c14852e118fe03b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKs_wF3AdTRfM5NZluIXFNwouAtJmrEp02RMUmH89aaM6EpX7y3uubx3ALgk-Jpg3NwkjEklECYNIoILxI_AjNSkQoQLcfyzN6-n4CylLcZYYN7OwG4xDL0zKrvgYeigDx4NMWilXe9SdgYm65PL7sPlESqv-jG5BJ2HeWNhGLLbuc8fWtkYvNoXTPVwM66j2pdyOLjB9s7bdA5OOtUne_E95-Dl7vZ5-YBWT_ePy8UKGcZ5RmumlGYtrYzpGlVZzQUjnWmpWTNWt63mRGEhtKqpNg1VxJQvK2oJEZ3FTLM5uJp6yyvve5uy3IZ9LMcnSWlNq4YX4N8U5gJTImpaUmRKmRhSiraTQ3Q7FUdJsDy4l5N7WdzLg3vJC0MnJpWsf7Pxt_lv6AvLzojm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262574148</pqid></control><display><type>article</type><title>Application of non-probabilistic sensitivity analysis in the optimization of aeronautical hydraulic pipelines</title><source>SpringerNature Journals</source><creator>Wang, Wenxuan ; Zhou, Changcong ; Gao, Hangshan ; Zhang, Zheng</creator><creatorcontrib>Wang, Wenxuan ; Zhou, Changcong ; Gao, Hangshan ; Zhang, Zheng</creatorcontrib><description>This paper investigates the reliability design optimization of an aeronautical hydraulic pipeline system, in which the constraint locations are treated as design parameters. To reduce the size of the optimization problem, two non-probabilistic global sensitivity indices are introduced and modified to screen out those constraint locations which have no or little effect on the optimization target. Considering the rest of constraint locations as design variables, the complexity of the optimization problem is dramatically reduced. The optimization of the pipeline systems demonstrates that the proposed method is superior to the traditional direct optimization method in both the optimization efficiency and results. This work indicates that introduction of sensitivity analysis can greatly improve the efficiency and performance of optimization, especially in those complex engineering problems involving a large number of design variables.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-017-1848-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aeronautics ; Complexity ; Computational Mathematics and Numerical Analysis ; Design engineering ; Design optimization ; Design parameters ; Engineering ; Engineering Design ; Research Paper ; Sensitivity analysis ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2018-06, Vol.57 (6), p.2177-2191</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-d3aab3925ccf7a5eb4831fc92cd33699b41a088ba62bc72a1c14852e118fe03b3</citedby><cites>FETCH-LOGICAL-c344t-d3aab3925ccf7a5eb4831fc92cd33699b41a088ba62bc72a1c14852e118fe03b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-017-1848-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-017-1848-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Wenxuan</creatorcontrib><creatorcontrib>Zhou, Changcong</creatorcontrib><creatorcontrib>Gao, Hangshan</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><title>Application of non-probabilistic sensitivity analysis in the optimization of aeronautical hydraulic pipelines</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>This paper investigates the reliability design optimization of an aeronautical hydraulic pipeline system, in which the constraint locations are treated as design parameters. To reduce the size of the optimization problem, two non-probabilistic global sensitivity indices are introduced and modified to screen out those constraint locations which have no or little effect on the optimization target. Considering the rest of constraint locations as design variables, the complexity of the optimization problem is dramatically reduced. The optimization of the pipeline systems demonstrates that the proposed method is superior to the traditional direct optimization method in both the optimization efficiency and results. This work indicates that introduction of sensitivity analysis can greatly improve the efficiency and performance of optimization, especially in those complex engineering problems involving a large number of design variables.</description><subject>Aeronautics</subject><subject>Complexity</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Research Paper</subject><subject>Sensitivity analysis</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEURYMoWKs_wF3AdTRfM5NZluIXFNwouAtJmrEp02RMUmH89aaM6EpX7y3uubx3ALgk-Jpg3NwkjEklECYNIoILxI_AjNSkQoQLcfyzN6-n4CylLcZYYN7OwG4xDL0zKrvgYeigDx4NMWilXe9SdgYm65PL7sPlESqv-jG5BJ2HeWNhGLLbuc8fWtkYvNoXTPVwM66j2pdyOLjB9s7bdA5OOtUne_E95-Dl7vZ5-YBWT_ePy8UKGcZ5RmumlGYtrYzpGlVZzQUjnWmpWTNWt63mRGEhtKqpNg1VxJQvK2oJEZ3FTLM5uJp6yyvve5uy3IZ9LMcnSWlNq4YX4N8U5gJTImpaUmRKmRhSiraTQ3Q7FUdJsDy4l5N7WdzLg3vJC0MnJpWsf7Pxt_lv6AvLzojm</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Wang, Wenxuan</creator><creator>Zhou, Changcong</creator><creator>Gao, Hangshan</creator><creator>Zhang, Zheng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180601</creationdate><title>Application of non-probabilistic sensitivity analysis in the optimization of aeronautical hydraulic pipelines</title><author>Wang, Wenxuan ; Zhou, Changcong ; Gao, Hangshan ; Zhang, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-d3aab3925ccf7a5eb4831fc92cd33699b41a088ba62bc72a1c14852e118fe03b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aeronautics</topic><topic>Complexity</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Research Paper</topic><topic>Sensitivity analysis</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wenxuan</creatorcontrib><creatorcontrib>Zhou, Changcong</creatorcontrib><creatorcontrib>Gao, Hangshan</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wenxuan</au><au>Zhou, Changcong</au><au>Gao, Hangshan</au><au>Zhang, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of non-probabilistic sensitivity analysis in the optimization of aeronautical hydraulic pipelines</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>57</volume><issue>6</issue><spage>2177</spage><epage>2191</epage><pages>2177-2191</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>This paper investigates the reliability design optimization of an aeronautical hydraulic pipeline system, in which the constraint locations are treated as design parameters. To reduce the size of the optimization problem, two non-probabilistic global sensitivity indices are introduced and modified to screen out those constraint locations which have no or little effect on the optimization target. Considering the rest of constraint locations as design variables, the complexity of the optimization problem is dramatically reduced. The optimization of the pipeline systems demonstrates that the proposed method is superior to the traditional direct optimization method in both the optimization efficiency and results. This work indicates that introduction of sensitivity analysis can greatly improve the efficiency and performance of optimization, especially in those complex engineering problems involving a large number of design variables.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-017-1848-4</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2018-06, Vol.57 (6), p.2177-2191
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2262574148
source SpringerNature Journals
subjects Aeronautics
Complexity
Computational Mathematics and Numerical Analysis
Design engineering
Design optimization
Design parameters
Engineering
Engineering Design
Research Paper
Sensitivity analysis
Theoretical and Applied Mechanics
title Application of non-probabilistic sensitivity analysis in the optimization of aeronautical hydraulic pipelines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20non-probabilistic%20sensitivity%20analysis%20in%20the%20optimization%20of%20aeronautical%20hydraulic%20pipelines&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Wang,%20Wenxuan&rft.date=2018-06-01&rft.volume=57&rft.issue=6&rft.spage=2177&rft.epage=2191&rft.pages=2177-2191&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-017-1848-4&rft_dat=%3Cproquest_cross%3E2262574148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262574148&rft_id=info:pmid/&rfr_iscdi=true