Multidisciplinary design of a guided flying vehicle using simplex nondominated sorting genetic algorithm II
This paper presents design of a typical Guided Flying Vehicle (GFV) using the multidisciplinary design optimization (MDO). The main objectives of this multi-disciplinary design are maximizing the payload’s weight as well as minimizing the miss distance. The main disciplines considered for this desig...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2018-02, Vol.57 (2), p.705-720 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 720 |
---|---|
container_issue | 2 |
container_start_page | 705 |
container_title | Structural and multidisciplinary optimization |
container_volume | 57 |
creator | Zandavi, Seid Miad Pourtakdoust, Seid H. |
description | This paper presents design of a typical Guided Flying Vehicle (GFV) using the multidisciplinary design optimization (MDO). The main objectives of this multi-disciplinary design are maximizing the payload’s weight as well as minimizing the miss distance. The main disciplines considered for this design include aerodynamics, dynamic, guidance, control, structure, weight and balance. This design of GFV is applied to three and six Degree of Freedom (DOF) to show comparison of simulation results. The hybrid scheme of optimization algorithm is based on Nelder-Mead Simplex optimization algorithm and Nondominated Sorting Genetic Algorithm II (NSGA II), called Simplex-NSGA II. This scheme is implemented for finding an optimal solution through the MDO. The Simplex-NSGA II method is a heuristic optimization algorithm that applies to multi-objective functions and the results are then compared with the most famous algorithms, like Nondominated Sorting Genetic Algorithm II (NSGA II) and Multi-Objective Particle Swarm Optimization (MOPSO). Simulation results demonstrate the superior performance of the Simplex-NSGA II over NSGA II and MOPSO. Also, it is used in this study in order to achieve an optimal solution using MDO in both 3DOF and 6DOF simulations of GFV to reach desirable performance index. |
doi_str_mv | 10.1007/s00158-017-1776-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262570745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1991639437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-61ff3b9812e2a1c4164ce32a8d3342c7aa3b7bbb5feaddccae2311b4fce452d43</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouK7-AG8Bz9VMkjbtURY_FhQvCt5Cmo9u1n6ZtOL-e7NUxIueZoZ53hl4kuQc8CVgzK8CxpAVKQaeAud5Sg-SBeSQpcCK4vCn56_HyUkIW4xxgVm5SN4ep2Z02gXlhsZ10u-QNsHVHeotkqienDYa2Wbnuhp9mI1TjUFT2E_BtUNjPlHXd7pvY3aMZOj9uF_WpjOjU0g2de_duGnRen2aHFnZBHP2XZfJy-3N8-o-fXi6W6-uH1JFGRvTHKylVVkAMUSCYpAzZSiRhaaUEcWlpBWvqiqzRmqtlDSEAlTMKsMyohldJhfz3cH375MJo9j2k-_iS0FITjKOOcv-o6AsIaclozxSMFPK9yF4Y8XgXRs1CcBib17M5kU0L_bmBY0ZMmdCZLva-F-X_wx9AQrciCc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262570745</pqid></control><display><type>article</type><title>Multidisciplinary design of a guided flying vehicle using simplex nondominated sorting genetic algorithm II</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zandavi, Seid Miad ; Pourtakdoust, Seid H.</creator><creatorcontrib>Zandavi, Seid Miad ; Pourtakdoust, Seid H.</creatorcontrib><description>This paper presents design of a typical Guided Flying Vehicle (GFV) using the multidisciplinary design optimization (MDO). The main objectives of this multi-disciplinary design are maximizing the payload’s weight as well as minimizing the miss distance. The main disciplines considered for this design include aerodynamics, dynamic, guidance, control, structure, weight and balance. This design of GFV is applied to three and six Degree of Freedom (DOF) to show comparison of simulation results. The hybrid scheme of optimization algorithm is based on Nelder-Mead Simplex optimization algorithm and Nondominated Sorting Genetic Algorithm II (NSGA II), called Simplex-NSGA II. This scheme is implemented for finding an optimal solution through the MDO. The Simplex-NSGA II method is a heuristic optimization algorithm that applies to multi-objective functions and the results are then compared with the most famous algorithms, like Nondominated Sorting Genetic Algorithm II (NSGA II) and Multi-Objective Particle Swarm Optimization (MOPSO). Simulation results demonstrate the superior performance of the Simplex-NSGA II over NSGA II and MOPSO. Also, it is used in this study in order to achieve an optimal solution using MDO in both 3DOF and 6DOF simulations of GFV to reach desirable performance index.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-017-1776-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classification ; Computational Mathematics and Numerical Analysis ; Computer simulation ; Degrees of freedom ; Design optimization ; Engineering ; Engineering Design ; Flight ; Fuel consumption ; Genetic algorithms ; Heuristic methods ; Miss distance ; Multidisciplinary design optimization ; Multiple objective analysis ; Optimization algorithms ; Particle swarm optimization ; Performance indices ; Research Paper ; Sorting algorithms ; Theoretical and Applied Mechanics ; Weight</subject><ispartof>Structural and multidisciplinary optimization, 2018-02, Vol.57 (2), p.705-720</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-61ff3b9812e2a1c4164ce32a8d3342c7aa3b7bbb5feaddccae2311b4fce452d43</citedby><cites>FETCH-LOGICAL-c344t-61ff3b9812e2a1c4164ce32a8d3342c7aa3b7bbb5feaddccae2311b4fce452d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-017-1776-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-017-1776-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Zandavi, Seid Miad</creatorcontrib><creatorcontrib>Pourtakdoust, Seid H.</creatorcontrib><title>Multidisciplinary design of a guided flying vehicle using simplex nondominated sorting genetic algorithm II</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>This paper presents design of a typical Guided Flying Vehicle (GFV) using the multidisciplinary design optimization (MDO). The main objectives of this multi-disciplinary design are maximizing the payload’s weight as well as minimizing the miss distance. The main disciplines considered for this design include aerodynamics, dynamic, guidance, control, structure, weight and balance. This design of GFV is applied to three and six Degree of Freedom (DOF) to show comparison of simulation results. The hybrid scheme of optimization algorithm is based on Nelder-Mead Simplex optimization algorithm and Nondominated Sorting Genetic Algorithm II (NSGA II), called Simplex-NSGA II. This scheme is implemented for finding an optimal solution through the MDO. The Simplex-NSGA II method is a heuristic optimization algorithm that applies to multi-objective functions and the results are then compared with the most famous algorithms, like Nondominated Sorting Genetic Algorithm II (NSGA II) and Multi-Objective Particle Swarm Optimization (MOPSO). Simulation results demonstrate the superior performance of the Simplex-NSGA II over NSGA II and MOPSO. Also, it is used in this study in order to achieve an optimal solution using MDO in both 3DOF and 6DOF simulations of GFV to reach desirable performance index.</description><subject>Classification</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer simulation</subject><subject>Degrees of freedom</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Flight</subject><subject>Fuel consumption</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Miss distance</subject><subject>Multidisciplinary design optimization</subject><subject>Multiple objective analysis</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>Performance indices</subject><subject>Research Paper</subject><subject>Sorting algorithms</subject><subject>Theoretical and Applied Mechanics</subject><subject>Weight</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhosouK7-AG8Bz9VMkjbtURY_FhQvCt5Cmo9u1n6ZtOL-e7NUxIueZoZ53hl4kuQc8CVgzK8CxpAVKQaeAud5Sg-SBeSQpcCK4vCn56_HyUkIW4xxgVm5SN4ep2Z02gXlhsZ10u-QNsHVHeotkqienDYa2Wbnuhp9mI1TjUFT2E_BtUNjPlHXd7pvY3aMZOj9uF_WpjOjU0g2de_duGnRen2aHFnZBHP2XZfJy-3N8-o-fXi6W6-uH1JFGRvTHKylVVkAMUSCYpAzZSiRhaaUEcWlpBWvqiqzRmqtlDSEAlTMKsMyohldJhfz3cH375MJo9j2k-_iS0FITjKOOcv-o6AsIaclozxSMFPK9yF4Y8XgXRs1CcBib17M5kU0L_bmBY0ZMmdCZLva-F-X_wx9AQrciCc</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Zandavi, Seid Miad</creator><creator>Pourtakdoust, Seid H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180201</creationdate><title>Multidisciplinary design of a guided flying vehicle using simplex nondominated sorting genetic algorithm II</title><author>Zandavi, Seid Miad ; Pourtakdoust, Seid H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-61ff3b9812e2a1c4164ce32a8d3342c7aa3b7bbb5feaddccae2311b4fce452d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classification</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer simulation</topic><topic>Degrees of freedom</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Flight</topic><topic>Fuel consumption</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Miss distance</topic><topic>Multidisciplinary design optimization</topic><topic>Multiple objective analysis</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>Performance indices</topic><topic>Research Paper</topic><topic>Sorting algorithms</topic><topic>Theoretical and Applied Mechanics</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zandavi, Seid Miad</creatorcontrib><creatorcontrib>Pourtakdoust, Seid H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zandavi, Seid Miad</au><au>Pourtakdoust, Seid H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidisciplinary design of a guided flying vehicle using simplex nondominated sorting genetic algorithm II</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>57</volume><issue>2</issue><spage>705</spage><epage>720</epage><pages>705-720</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>This paper presents design of a typical Guided Flying Vehicle (GFV) using the multidisciplinary design optimization (MDO). The main objectives of this multi-disciplinary design are maximizing the payload’s weight as well as minimizing the miss distance. The main disciplines considered for this design include aerodynamics, dynamic, guidance, control, structure, weight and balance. This design of GFV is applied to three and six Degree of Freedom (DOF) to show comparison of simulation results. The hybrid scheme of optimization algorithm is based on Nelder-Mead Simplex optimization algorithm and Nondominated Sorting Genetic Algorithm II (NSGA II), called Simplex-NSGA II. This scheme is implemented for finding an optimal solution through the MDO. The Simplex-NSGA II method is a heuristic optimization algorithm that applies to multi-objective functions and the results are then compared with the most famous algorithms, like Nondominated Sorting Genetic Algorithm II (NSGA II) and Multi-Objective Particle Swarm Optimization (MOPSO). Simulation results demonstrate the superior performance of the Simplex-NSGA II over NSGA II and MOPSO. Also, it is used in this study in order to achieve an optimal solution using MDO in both 3DOF and 6DOF simulations of GFV to reach desirable performance index.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-017-1776-3</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2018-02, Vol.57 (2), p.705-720 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2262570745 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classification Computational Mathematics and Numerical Analysis Computer simulation Degrees of freedom Design optimization Engineering Engineering Design Flight Fuel consumption Genetic algorithms Heuristic methods Miss distance Multidisciplinary design optimization Multiple objective analysis Optimization algorithms Particle swarm optimization Performance indices Research Paper Sorting algorithms Theoretical and Applied Mechanics Weight |
title | Multidisciplinary design of a guided flying vehicle using simplex nondominated sorting genetic algorithm II |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T03%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidisciplinary%20design%20of%20a%20guided%20flying%20vehicle%20using%20simplex%20nondominated%20sorting%20genetic%20algorithm%20II&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Zandavi,%20Seid%20Miad&rft.date=2018-02-01&rft.volume=57&rft.issue=2&rft.spage=705&rft.epage=720&rft.pages=705-720&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-017-1776-3&rft_dat=%3Cproquest_cross%3E1991639437%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262570745&rft_id=info:pmid/&rfr_iscdi=true |