A novel evidence-based fuzzy reliability analysis method for structures
Epistemic uncertainties always exist in engineering structures due to the lack of knowledge or information, which can be mathematically described by either fuzzy-set theory or evidence theory (ET) In this work, the authors present a novel uncertainty model, namely evidence-based fuzzy model, in whic...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2017-04, Vol.55 (4), p.1237-1249 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1249 |
---|---|
container_issue | 4 |
container_start_page | 1237 |
container_title | Structural and multidisciplinary optimization |
container_volume | 55 |
creator | Tao, Y. R. Cao, L. Huang, Z. H. H. |
description | Epistemic uncertainties always exist in engineering structures due to the lack of knowledge or information, which can be mathematically described by either fuzzy-set theory or evidence theory (ET) In this work, the authors present a novel uncertainty model, namely evidence-based fuzzy model, in which the fuzzy sets and ET are combined to represent the epistemic uncertainty. A novel method for combining multiple membership functions and a corresponding reliability analysis method is also developed. In the combination method, the combined fuzzy-set representations are approximated by the enveloping lines of the multiple membership functions (smoothed by neglecting the valleys in the membership functions curves) and the Murphy’s average combination rule is applied to compute the basic probability assignment for focal elements. Then, the combined membership function is transformed to the equivalent probability density function by means of a normalizing factor. Finally, the Markov Chain Monte Carlo (MCMC) subset simulation method is used to solve reliability by introducing intermediate failure events. A numerical example and two engineering examples are provided to demonstrate the effectiveness of the proposed method. |
doi_str_mv | 10.1007/s00158-016-1570-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262568962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1881812043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-7ce9b38fab1067eb5a9f1b4384c9829f3251fe00bb6d7bb76534a1a45d627a723</originalsourceid><addsrcrecordid>eNp9kE1Lw0AURQdRsFZ_gLuA69H3JvOVZSlahYIbBXfDTDLRlDSpM0kh_fWmRMSNrt5dnHt5HEKuEW4RQN1FABSaAkqKQgFVJ2SGEgVFrvXpT1Zv5-Qixg0AaODZjKwWSdPufZ34fVX4JvfU2eiLpOwPhyEJvq6sq-qqGxLb2HqIVUy2vvtoR6INSexCn3d98PGSnJW2jv7q-87J68P9y_KRrp9XT8vFmuYp5x1Vuc9cqkvrEKTyTtisRMdTzfNMs6xMmcDSAzgnC-WckiLlFi0XhWTKKpbOyc20uwvtZ-9jZzZtH8bXomFMMiF1Jv-lUGvUyICnI4UTlYc2xuBLswvV1obBIJijVTNZNaNVc7Rq1NhhUyeObPPuw6_lP0tfb655YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262568962</pqid></control><display><type>article</type><title>A novel evidence-based fuzzy reliability analysis method for structures</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tao, Y. R. ; Cao, L. ; Huang, Z. H. H.</creator><creatorcontrib>Tao, Y. R. ; Cao, L. ; Huang, Z. H. H.</creatorcontrib><description>Epistemic uncertainties always exist in engineering structures due to the lack of knowledge or information, which can be mathematically described by either fuzzy-set theory or evidence theory (ET) In this work, the authors present a novel uncertainty model, namely evidence-based fuzzy model, in which the fuzzy sets and ET are combined to represent the epistemic uncertainty. A novel method for combining multiple membership functions and a corresponding reliability analysis method is also developed. In the combination method, the combined fuzzy-set representations are approximated by the enveloping lines of the multiple membership functions (smoothed by neglecting the valleys in the membership functions curves) and the Murphy’s average combination rule is applied to compute the basic probability assignment for focal elements. Then, the combined membership function is transformed to the equivalent probability density function by means of a normalizing factor. Finally, the Markov Chain Monte Carlo (MCMC) subset simulation method is used to solve reliability by introducing intermediate failure events. A numerical example and two engineering examples are provided to demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-016-1570-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational Mathematics and Numerical Analysis ; Computer simulation ; Engineering ; Engineering Design ; Fuzzy set theory ; Fuzzy sets ; Markov chains ; Monte Carlo simulation ; Normalizing (statistics) ; Probability density functions ; Reliability analysis ; Reliability engineering ; Research Paper ; Structural reliability ; Theoretical and Applied Mechanics ; Uncertainty ; Uncertainty analysis</subject><ispartof>Structural and multidisciplinary optimization, 2017-04, Vol.55 (4), p.1237-1249</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-7ce9b38fab1067eb5a9f1b4384c9829f3251fe00bb6d7bb76534a1a45d627a723</citedby><cites>FETCH-LOGICAL-c344t-7ce9b38fab1067eb5a9f1b4384c9829f3251fe00bb6d7bb76534a1a45d627a723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-016-1570-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-016-1570-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tao, Y. R.</creatorcontrib><creatorcontrib>Cao, L.</creatorcontrib><creatorcontrib>Huang, Z. H. H.</creatorcontrib><title>A novel evidence-based fuzzy reliability analysis method for structures</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>Epistemic uncertainties always exist in engineering structures due to the lack of knowledge or information, which can be mathematically described by either fuzzy-set theory or evidence theory (ET) In this work, the authors present a novel uncertainty model, namely evidence-based fuzzy model, in which the fuzzy sets and ET are combined to represent the epistemic uncertainty. A novel method for combining multiple membership functions and a corresponding reliability analysis method is also developed. In the combination method, the combined fuzzy-set representations are approximated by the enveloping lines of the multiple membership functions (smoothed by neglecting the valleys in the membership functions curves) and the Murphy’s average combination rule is applied to compute the basic probability assignment for focal elements. Then, the combined membership function is transformed to the equivalent probability density function by means of a normalizing factor. Finally, the Markov Chain Monte Carlo (MCMC) subset simulation method is used to solve reliability by introducing intermediate failure events. A numerical example and two engineering examples are provided to demonstrate the effectiveness of the proposed method.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Markov chains</subject><subject>Monte Carlo simulation</subject><subject>Normalizing (statistics)</subject><subject>Probability density functions</subject><subject>Reliability analysis</subject><subject>Reliability engineering</subject><subject>Research Paper</subject><subject>Structural reliability</subject><subject>Theoretical and Applied Mechanics</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1Lw0AURQdRsFZ_gLuA69H3JvOVZSlahYIbBXfDTDLRlDSpM0kh_fWmRMSNrt5dnHt5HEKuEW4RQN1FABSaAkqKQgFVJ2SGEgVFrvXpT1Zv5-Qixg0AaODZjKwWSdPufZ34fVX4JvfU2eiLpOwPhyEJvq6sq-qqGxLb2HqIVUy2vvtoR6INSexCn3d98PGSnJW2jv7q-87J68P9y_KRrp9XT8vFmuYp5x1Vuc9cqkvrEKTyTtisRMdTzfNMs6xMmcDSAzgnC-WckiLlFi0XhWTKKpbOyc20uwvtZ-9jZzZtH8bXomFMMiF1Jv-lUGvUyICnI4UTlYc2xuBLswvV1obBIJijVTNZNaNVc7Rq1NhhUyeObPPuw6_lP0tfb655YQ</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Tao, Y. R.</creator><creator>Cao, L.</creator><creator>Huang, Z. H. H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170401</creationdate><title>A novel evidence-based fuzzy reliability analysis method for structures</title><author>Tao, Y. R. ; Cao, L. ; Huang, Z. H. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-7ce9b38fab1067eb5a9f1b4384c9829f3251fe00bb6d7bb76534a1a45d627a723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Markov chains</topic><topic>Monte Carlo simulation</topic><topic>Normalizing (statistics)</topic><topic>Probability density functions</topic><topic>Reliability analysis</topic><topic>Reliability engineering</topic><topic>Research Paper</topic><topic>Structural reliability</topic><topic>Theoretical and Applied Mechanics</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Y. R.</creatorcontrib><creatorcontrib>Cao, L.</creatorcontrib><creatorcontrib>Huang, Z. H. H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Y. R.</au><au>Cao, L.</au><au>Huang, Z. H. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel evidence-based fuzzy reliability analysis method for structures</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>55</volume><issue>4</issue><spage>1237</spage><epage>1249</epage><pages>1237-1249</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>Epistemic uncertainties always exist in engineering structures due to the lack of knowledge or information, which can be mathematically described by either fuzzy-set theory or evidence theory (ET) In this work, the authors present a novel uncertainty model, namely evidence-based fuzzy model, in which the fuzzy sets and ET are combined to represent the epistemic uncertainty. A novel method for combining multiple membership functions and a corresponding reliability analysis method is also developed. In the combination method, the combined fuzzy-set representations are approximated by the enveloping lines of the multiple membership functions (smoothed by neglecting the valleys in the membership functions curves) and the Murphy’s average combination rule is applied to compute the basic probability assignment for focal elements. Then, the combined membership function is transformed to the equivalent probability density function by means of a normalizing factor. Finally, the Markov Chain Monte Carlo (MCMC) subset simulation method is used to solve reliability by introducing intermediate failure events. A numerical example and two engineering examples are provided to demonstrate the effectiveness of the proposed method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-016-1570-7</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2017-04, Vol.55 (4), p.1237-1249 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2262568962 |
source | SpringerLink Journals - AutoHoldings |
subjects | Computational Mathematics and Numerical Analysis Computer simulation Engineering Engineering Design Fuzzy set theory Fuzzy sets Markov chains Monte Carlo simulation Normalizing (statistics) Probability density functions Reliability analysis Reliability engineering Research Paper Structural reliability Theoretical and Applied Mechanics Uncertainty Uncertainty analysis |
title | A novel evidence-based fuzzy reliability analysis method for structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A32%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20evidence-based%20fuzzy%20reliability%20analysis%20method%20for%20structures&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Tao,%20Y.%20R.&rft.date=2017-04-01&rft.volume=55&rft.issue=4&rft.spage=1237&rft.epage=1249&rft.pages=1237-1249&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-016-1570-7&rft_dat=%3Cproquest_cross%3E1881812043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262568962&rft_id=info:pmid/&rfr_iscdi=true |