A novel evidence-based fuzzy reliability analysis method for structures

Epistemic uncertainties always exist in engineering structures due to the lack of knowledge or information, which can be mathematically described by either fuzzy-set theory or evidence theory (ET) In this work, the authors present a novel uncertainty model, namely evidence-based fuzzy model, in whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2017-04, Vol.55 (4), p.1237-1249
Hauptverfasser: Tao, Y. R., Cao, L., Huang, Z. H. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1249
container_issue 4
container_start_page 1237
container_title Structural and multidisciplinary optimization
container_volume 55
creator Tao, Y. R.
Cao, L.
Huang, Z. H. H.
description Epistemic uncertainties always exist in engineering structures due to the lack of knowledge or information, which can be mathematically described by either fuzzy-set theory or evidence theory (ET) In this work, the authors present a novel uncertainty model, namely evidence-based fuzzy model, in which the fuzzy sets and ET are combined to represent the epistemic uncertainty. A novel method for combining multiple membership functions and a corresponding reliability analysis method is also developed. In the combination method, the combined fuzzy-set representations are approximated by the enveloping lines of the multiple membership functions (smoothed by neglecting the valleys in the membership functions curves) and the Murphy’s average combination rule is applied to compute the basic probability assignment for focal elements. Then, the combined membership function is transformed to the equivalent probability density function by means of a normalizing factor. Finally, the Markov Chain Monte Carlo (MCMC) subset simulation method is used to solve reliability by introducing intermediate failure events. A numerical example and two engineering examples are provided to demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1007/s00158-016-1570-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262568962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1881812043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-7ce9b38fab1067eb5a9f1b4384c9829f3251fe00bb6d7bb76534a1a45d627a723</originalsourceid><addsrcrecordid>eNp9kE1Lw0AURQdRsFZ_gLuA69H3JvOVZSlahYIbBXfDTDLRlDSpM0kh_fWmRMSNrt5dnHt5HEKuEW4RQN1FABSaAkqKQgFVJ2SGEgVFrvXpT1Zv5-Qixg0AaODZjKwWSdPufZ34fVX4JvfU2eiLpOwPhyEJvq6sq-qqGxLb2HqIVUy2vvtoR6INSexCn3d98PGSnJW2jv7q-87J68P9y_KRrp9XT8vFmuYp5x1Vuc9cqkvrEKTyTtisRMdTzfNMs6xMmcDSAzgnC-WckiLlFi0XhWTKKpbOyc20uwvtZ-9jZzZtH8bXomFMMiF1Jv-lUGvUyICnI4UTlYc2xuBLswvV1obBIJijVTNZNaNVc7Rq1NhhUyeObPPuw6_lP0tfb655YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262568962</pqid></control><display><type>article</type><title>A novel evidence-based fuzzy reliability analysis method for structures</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tao, Y. R. ; Cao, L. ; Huang, Z. H. H.</creator><creatorcontrib>Tao, Y. R. ; Cao, L. ; Huang, Z. H. H.</creatorcontrib><description>Epistemic uncertainties always exist in engineering structures due to the lack of knowledge or information, which can be mathematically described by either fuzzy-set theory or evidence theory (ET) In this work, the authors present a novel uncertainty model, namely evidence-based fuzzy model, in which the fuzzy sets and ET are combined to represent the epistemic uncertainty. A novel method for combining multiple membership functions and a corresponding reliability analysis method is also developed. In the combination method, the combined fuzzy-set representations are approximated by the enveloping lines of the multiple membership functions (smoothed by neglecting the valleys in the membership functions curves) and the Murphy’s average combination rule is applied to compute the basic probability assignment for focal elements. Then, the combined membership function is transformed to the equivalent probability density function by means of a normalizing factor. Finally, the Markov Chain Monte Carlo (MCMC) subset simulation method is used to solve reliability by introducing intermediate failure events. A numerical example and two engineering examples are provided to demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-016-1570-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational Mathematics and Numerical Analysis ; Computer simulation ; Engineering ; Engineering Design ; Fuzzy set theory ; Fuzzy sets ; Markov chains ; Monte Carlo simulation ; Normalizing (statistics) ; Probability density functions ; Reliability analysis ; Reliability engineering ; Research Paper ; Structural reliability ; Theoretical and Applied Mechanics ; Uncertainty ; Uncertainty analysis</subject><ispartof>Structural and multidisciplinary optimization, 2017-04, Vol.55 (4), p.1237-1249</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-7ce9b38fab1067eb5a9f1b4384c9829f3251fe00bb6d7bb76534a1a45d627a723</citedby><cites>FETCH-LOGICAL-c344t-7ce9b38fab1067eb5a9f1b4384c9829f3251fe00bb6d7bb76534a1a45d627a723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-016-1570-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-016-1570-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tao, Y. R.</creatorcontrib><creatorcontrib>Cao, L.</creatorcontrib><creatorcontrib>Huang, Z. H. H.</creatorcontrib><title>A novel evidence-based fuzzy reliability analysis method for structures</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>Epistemic uncertainties always exist in engineering structures due to the lack of knowledge or information, which can be mathematically described by either fuzzy-set theory or evidence theory (ET) In this work, the authors present a novel uncertainty model, namely evidence-based fuzzy model, in which the fuzzy sets and ET are combined to represent the epistemic uncertainty. A novel method for combining multiple membership functions and a corresponding reliability analysis method is also developed. In the combination method, the combined fuzzy-set representations are approximated by the enveloping lines of the multiple membership functions (smoothed by neglecting the valleys in the membership functions curves) and the Murphy’s average combination rule is applied to compute the basic probability assignment for focal elements. Then, the combined membership function is transformed to the equivalent probability density function by means of a normalizing factor. Finally, the Markov Chain Monte Carlo (MCMC) subset simulation method is used to solve reliability by introducing intermediate failure events. A numerical example and two engineering examples are provided to demonstrate the effectiveness of the proposed method.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Markov chains</subject><subject>Monte Carlo simulation</subject><subject>Normalizing (statistics)</subject><subject>Probability density functions</subject><subject>Reliability analysis</subject><subject>Reliability engineering</subject><subject>Research Paper</subject><subject>Structural reliability</subject><subject>Theoretical and Applied Mechanics</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1Lw0AURQdRsFZ_gLuA69H3JvOVZSlahYIbBXfDTDLRlDSpM0kh_fWmRMSNrt5dnHt5HEKuEW4RQN1FABSaAkqKQgFVJ2SGEgVFrvXpT1Zv5-Qixg0AaODZjKwWSdPufZ34fVX4JvfU2eiLpOwPhyEJvq6sq-qqGxLb2HqIVUy2vvtoR6INSexCn3d98PGSnJW2jv7q-87J68P9y_KRrp9XT8vFmuYp5x1Vuc9cqkvrEKTyTtisRMdTzfNMs6xMmcDSAzgnC-WckiLlFi0XhWTKKpbOyc20uwvtZ-9jZzZtH8bXomFMMiF1Jv-lUGvUyICnI4UTlYc2xuBLswvV1obBIJijVTNZNaNVc7Rq1NhhUyeObPPuw6_lP0tfb655YQ</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Tao, Y. R.</creator><creator>Cao, L.</creator><creator>Huang, Z. H. H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170401</creationdate><title>A novel evidence-based fuzzy reliability analysis method for structures</title><author>Tao, Y. R. ; Cao, L. ; Huang, Z. H. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-7ce9b38fab1067eb5a9f1b4384c9829f3251fe00bb6d7bb76534a1a45d627a723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Markov chains</topic><topic>Monte Carlo simulation</topic><topic>Normalizing (statistics)</topic><topic>Probability density functions</topic><topic>Reliability analysis</topic><topic>Reliability engineering</topic><topic>Research Paper</topic><topic>Structural reliability</topic><topic>Theoretical and Applied Mechanics</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Y. R.</creatorcontrib><creatorcontrib>Cao, L.</creatorcontrib><creatorcontrib>Huang, Z. H. H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Y. R.</au><au>Cao, L.</au><au>Huang, Z. H. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel evidence-based fuzzy reliability analysis method for structures</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>55</volume><issue>4</issue><spage>1237</spage><epage>1249</epage><pages>1237-1249</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>Epistemic uncertainties always exist in engineering structures due to the lack of knowledge or information, which can be mathematically described by either fuzzy-set theory or evidence theory (ET) In this work, the authors present a novel uncertainty model, namely evidence-based fuzzy model, in which the fuzzy sets and ET are combined to represent the epistemic uncertainty. A novel method for combining multiple membership functions and a corresponding reliability analysis method is also developed. In the combination method, the combined fuzzy-set representations are approximated by the enveloping lines of the multiple membership functions (smoothed by neglecting the valleys in the membership functions curves) and the Murphy’s average combination rule is applied to compute the basic probability assignment for focal elements. Then, the combined membership function is transformed to the equivalent probability density function by means of a normalizing factor. Finally, the Markov Chain Monte Carlo (MCMC) subset simulation method is used to solve reliability by introducing intermediate failure events. A numerical example and two engineering examples are provided to demonstrate the effectiveness of the proposed method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-016-1570-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2017-04, Vol.55 (4), p.1237-1249
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2262568962
source SpringerLink Journals - AutoHoldings
subjects Computational Mathematics and Numerical Analysis
Computer simulation
Engineering
Engineering Design
Fuzzy set theory
Fuzzy sets
Markov chains
Monte Carlo simulation
Normalizing (statistics)
Probability density functions
Reliability analysis
Reliability engineering
Research Paper
Structural reliability
Theoretical and Applied Mechanics
Uncertainty
Uncertainty analysis
title A novel evidence-based fuzzy reliability analysis method for structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A32%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20evidence-based%20fuzzy%20reliability%20analysis%20method%20for%20structures&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Tao,%20Y.%20R.&rft.date=2017-04-01&rft.volume=55&rft.issue=4&rft.spage=1237&rft.epage=1249&rft.pages=1237-1249&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-016-1570-7&rft_dat=%3Cproquest_cross%3E1881812043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262568962&rft_id=info:pmid/&rfr_iscdi=true