Open-source coupled aerostructural optimization using Python

To teach multidisciplinary design optimization (MDO) to students effectively, it is useful to have accessible software that runs quickly, allowing hands-on exploration of coupled systems and optimization methods. Open-source software exists for low-fidelity aerodynamic or structural analysis, but th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2018-04, Vol.57 (4), p.1815-1827
Hauptverfasser: Jasa, John P., Hwang, John T., Martins, Joaquim R. R. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1827
container_issue 4
container_start_page 1815
container_title Structural and multidisciplinary optimization
container_volume 57
creator Jasa, John P.
Hwang, John T.
Martins, Joaquim R. R. A.
description To teach multidisciplinary design optimization (MDO) to students effectively, it is useful to have accessible software that runs quickly, allowing hands-on exploration of coupled systems and optimization methods. Open-source software exists for low-fidelity aerodynamic or structural analysis, but there is no existing software for fast tightly coupled aerostructural analysis and design optimization. To address this need, we present OpenAeroStruct, an open-source low-fidelity aerostructural analysis and optimization tool developed in NASA’s OpenMDAO framework. It uses the coupled adjoint method to compute the derivatives required for efficient gradient-based optimization. OpenAeroStruct combines a vortex lattice method and 1-D finite-element analysis to model lifting surfaces, such as aircraft wings and tails, and uses the coupled-adjoint method to compute the aerostructural derivatives. We use the Breguet range equation to compute the fuel burn as a function of structural weight and aerodynamic performance. OpenAeroStruct has proved effective both as an educational tool and as a benchmark for researching new MDO methods. There is much more potential to be exploited as the research community continues to develop and use this tool.
doi_str_mv 10.1007/s00158-018-1912-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262568696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262568696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-c0c064b44b18f4ffb3b232322a5e40185cd000aee6c1c18950407441ea2097103</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9giMRvuHMexJRZUQUGqVAaQ2CzHdUqqNgm2M5Rfj6sgmEA33A3fu3v3CLlEuEaA8iYAYCEpoKSokFF5RCYosKDIpTz-mcu3U3IWwgYAJHA1IbfL3rU0dIO3LrPd0G_dKjPOdyH6wcbBm23W9bHZNZ8mNl2bDaFp19nzPr537Tk5qc02uIvvPiWvD_cvs0e6WM6fZncLanPOI7VgQfCK8wplzeu6yiuWp2KmcDw5Luwq-THOCYsWpSqAQ8k5OsNAlQj5lFyNe3vffQwuRL1Jhtt0UjMmWCGkUOJfChhXCoXkicKRsunH4F2te9_sjN9rBH2IUo9R6mRMH6LUMmnYqAmJbdfO_27-W_QFKPl03Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262568696</pqid></control><display><type>article</type><title>Open-source coupled aerostructural optimization using Python</title><source>SpringerNature Journals</source><creator>Jasa, John P. ; Hwang, John T. ; Martins, Joaquim R. R. A.</creator><creatorcontrib>Jasa, John P. ; Hwang, John T. ; Martins, Joaquim R. R. A.</creatorcontrib><description>To teach multidisciplinary design optimization (MDO) to students effectively, it is useful to have accessible software that runs quickly, allowing hands-on exploration of coupled systems and optimization methods. Open-source software exists for low-fidelity aerodynamic or structural analysis, but there is no existing software for fast tightly coupled aerostructural analysis and design optimization. To address this need, we present OpenAeroStruct, an open-source low-fidelity aerostructural analysis and optimization tool developed in NASA’s OpenMDAO framework. It uses the coupled adjoint method to compute the derivatives required for efficient gradient-based optimization. OpenAeroStruct combines a vortex lattice method and 1-D finite-element analysis to model lifting surfaces, such as aircraft wings and tails, and uses the coupled-adjoint method to compute the aerostructural derivatives. We use the Breguet range equation to compute the fuel burn as a function of structural weight and aerodynamic performance. OpenAeroStruct has proved effective both as an educational tool and as a benchmark for researching new MDO methods. There is much more potential to be exploited as the research community continues to develop and use this tool.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-018-1912-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Aerodynamics ; Aircraft components ; Computational Mathematics and Numerical Analysis ; Derivatives ; Design optimization ; Educational Article ; Engineering ; Engineering Design ; Finite element method ; Lift devices ; Multidisciplinary design optimization ; Open source software ; Structural analysis ; Structural weight ; Teaching methods ; Theoretical and Applied Mechanics ; Vortex lattice method ; Wings (aircraft)</subject><ispartof>Structural and multidisciplinary optimization, 2018-04, Vol.57 (4), p.1815-1827</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-c0c064b44b18f4ffb3b232322a5e40185cd000aee6c1c18950407441ea2097103</citedby><cites>FETCH-LOGICAL-c344t-c0c064b44b18f4ffb3b232322a5e40185cd000aee6c1c18950407441ea2097103</cites><orcidid>0000-0001-5442-2792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-018-1912-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-018-1912-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Jasa, John P.</creatorcontrib><creatorcontrib>Hwang, John T.</creatorcontrib><creatorcontrib>Martins, Joaquim R. R. A.</creatorcontrib><title>Open-source coupled aerostructural optimization using Python</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>To teach multidisciplinary design optimization (MDO) to students effectively, it is useful to have accessible software that runs quickly, allowing hands-on exploration of coupled systems and optimization methods. Open-source software exists for low-fidelity aerodynamic or structural analysis, but there is no existing software for fast tightly coupled aerostructural analysis and design optimization. To address this need, we present OpenAeroStruct, an open-source low-fidelity aerostructural analysis and optimization tool developed in NASA’s OpenMDAO framework. It uses the coupled adjoint method to compute the derivatives required for efficient gradient-based optimization. OpenAeroStruct combines a vortex lattice method and 1-D finite-element analysis to model lifting surfaces, such as aircraft wings and tails, and uses the coupled-adjoint method to compute the aerostructural derivatives. We use the Breguet range equation to compute the fuel burn as a function of structural weight and aerodynamic performance. OpenAeroStruct has proved effective both as an educational tool and as a benchmark for researching new MDO methods. There is much more potential to be exploited as the research community continues to develop and use this tool.</description><subject>Accuracy</subject><subject>Aerodynamics</subject><subject>Aircraft components</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Derivatives</subject><subject>Design optimization</subject><subject>Educational Article</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Finite element method</subject><subject>Lift devices</subject><subject>Multidisciplinary design optimization</subject><subject>Open source software</subject><subject>Structural analysis</subject><subject>Structural weight</subject><subject>Teaching methods</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vortex lattice method</subject><subject>Wings (aircraft)</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kDFPwzAQhS0EEqXwA9giMRvuHMexJRZUQUGqVAaQ2CzHdUqqNgm2M5Rfj6sgmEA33A3fu3v3CLlEuEaA8iYAYCEpoKSokFF5RCYosKDIpTz-mcu3U3IWwgYAJHA1IbfL3rU0dIO3LrPd0G_dKjPOdyH6wcbBm23W9bHZNZ8mNl2bDaFp19nzPr537Tk5qc02uIvvPiWvD_cvs0e6WM6fZncLanPOI7VgQfCK8wplzeu6yiuWp2KmcDw5Luwq-THOCYsWpSqAQ8k5OsNAlQj5lFyNe3vffQwuRL1Jhtt0UjMmWCGkUOJfChhXCoXkicKRsunH4F2te9_sjN9rBH2IUo9R6mRMH6LUMmnYqAmJbdfO_27-W_QFKPl03Q</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Jasa, John P.</creator><creator>Hwang, John T.</creator><creator>Martins, Joaquim R. R. A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5442-2792</orcidid></search><sort><creationdate>20180401</creationdate><title>Open-source coupled aerostructural optimization using Python</title><author>Jasa, John P. ; Hwang, John T. ; Martins, Joaquim R. R. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-c0c064b44b18f4ffb3b232322a5e40185cd000aee6c1c18950407441ea2097103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Aerodynamics</topic><topic>Aircraft components</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Derivatives</topic><topic>Design optimization</topic><topic>Educational Article</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Finite element method</topic><topic>Lift devices</topic><topic>Multidisciplinary design optimization</topic><topic>Open source software</topic><topic>Structural analysis</topic><topic>Structural weight</topic><topic>Teaching methods</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vortex lattice method</topic><topic>Wings (aircraft)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jasa, John P.</creatorcontrib><creatorcontrib>Hwang, John T.</creatorcontrib><creatorcontrib>Martins, Joaquim R. R. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jasa, John P.</au><au>Hwang, John T.</au><au>Martins, Joaquim R. R. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open-source coupled aerostructural optimization using Python</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>57</volume><issue>4</issue><spage>1815</spage><epage>1827</epage><pages>1815-1827</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>To teach multidisciplinary design optimization (MDO) to students effectively, it is useful to have accessible software that runs quickly, allowing hands-on exploration of coupled systems and optimization methods. Open-source software exists for low-fidelity aerodynamic or structural analysis, but there is no existing software for fast tightly coupled aerostructural analysis and design optimization. To address this need, we present OpenAeroStruct, an open-source low-fidelity aerostructural analysis and optimization tool developed in NASA’s OpenMDAO framework. It uses the coupled adjoint method to compute the derivatives required for efficient gradient-based optimization. OpenAeroStruct combines a vortex lattice method and 1-D finite-element analysis to model lifting surfaces, such as aircraft wings and tails, and uses the coupled-adjoint method to compute the aerostructural derivatives. We use the Breguet range equation to compute the fuel burn as a function of structural weight and aerodynamic performance. OpenAeroStruct has proved effective both as an educational tool and as a benchmark for researching new MDO methods. There is much more potential to be exploited as the research community continues to develop and use this tool.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-018-1912-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5442-2792</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2018-04, Vol.57 (4), p.1815-1827
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2262568696
source SpringerNature Journals
subjects Accuracy
Aerodynamics
Aircraft components
Computational Mathematics and Numerical Analysis
Derivatives
Design optimization
Educational Article
Engineering
Engineering Design
Finite element method
Lift devices
Multidisciplinary design optimization
Open source software
Structural analysis
Structural weight
Teaching methods
Theoretical and Applied Mechanics
Vortex lattice method
Wings (aircraft)
title Open-source coupled aerostructural optimization using Python
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T01%3A14%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open-source%20coupled%20aerostructural%20optimization%20using%20Python&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Jasa,%20John%20P.&rft.date=2018-04-01&rft.volume=57&rft.issue=4&rft.spage=1815&rft.epage=1827&rft.pages=1815-1827&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-018-1912-8&rft_dat=%3Cproquest_cross%3E2262568696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262568696&rft_id=info:pmid/&rfr_iscdi=true