Open-source coupled aerostructural optimization using Python
To teach multidisciplinary design optimization (MDO) to students effectively, it is useful to have accessible software that runs quickly, allowing hands-on exploration of coupled systems and optimization methods. Open-source software exists for low-fidelity aerodynamic or structural analysis, but th...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2018-04, Vol.57 (4), p.1815-1827 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1827 |
---|---|
container_issue | 4 |
container_start_page | 1815 |
container_title | Structural and multidisciplinary optimization |
container_volume | 57 |
creator | Jasa, John P. Hwang, John T. Martins, Joaquim R. R. A. |
description | To teach multidisciplinary design optimization (MDO) to students effectively, it is useful to have accessible software that runs quickly, allowing hands-on exploration of coupled systems and optimization methods. Open-source software exists for low-fidelity aerodynamic or structural analysis, but there is no existing software for fast tightly coupled aerostructural analysis and design optimization. To address this need, we present OpenAeroStruct, an open-source low-fidelity aerostructural analysis and optimization tool developed in NASA’s OpenMDAO framework. It uses the coupled adjoint method to compute the derivatives required for efficient gradient-based optimization. OpenAeroStruct combines a vortex lattice method and 1-D finite-element analysis to model lifting surfaces, such as aircraft wings and tails, and uses the coupled-adjoint method to compute the aerostructural derivatives. We use the Breguet range equation to compute the fuel burn as a function of structural weight and aerodynamic performance. OpenAeroStruct has proved effective both as an educational tool and as a benchmark for researching new MDO methods. There is much more potential to be exploited as the research community continues to develop and use this tool. |
doi_str_mv | 10.1007/s00158-018-1912-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262568696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262568696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-c0c064b44b18f4ffb3b232322a5e40185cd000aee6c1c18950407441ea2097103</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9giMRvuHMexJRZUQUGqVAaQ2CzHdUqqNgm2M5Rfj6sgmEA33A3fu3v3CLlEuEaA8iYAYCEpoKSokFF5RCYosKDIpTz-mcu3U3IWwgYAJHA1IbfL3rU0dIO3LrPd0G_dKjPOdyH6wcbBm23W9bHZNZ8mNl2bDaFp19nzPr537Tk5qc02uIvvPiWvD_cvs0e6WM6fZncLanPOI7VgQfCK8wplzeu6yiuWp2KmcDw5Luwq-THOCYsWpSqAQ8k5OsNAlQj5lFyNe3vffQwuRL1Jhtt0UjMmWCGkUOJfChhXCoXkicKRsunH4F2te9_sjN9rBH2IUo9R6mRMH6LUMmnYqAmJbdfO_27-W_QFKPl03Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262568696</pqid></control><display><type>article</type><title>Open-source coupled aerostructural optimization using Python</title><source>SpringerNature Journals</source><creator>Jasa, John P. ; Hwang, John T. ; Martins, Joaquim R. R. A.</creator><creatorcontrib>Jasa, John P. ; Hwang, John T. ; Martins, Joaquim R. R. A.</creatorcontrib><description>To teach multidisciplinary design optimization (MDO) to students effectively, it is useful to have accessible software that runs quickly, allowing hands-on exploration of coupled systems and optimization methods. Open-source software exists for low-fidelity aerodynamic or structural analysis, but there is no existing software for fast tightly coupled aerostructural analysis and design optimization. To address this need, we present OpenAeroStruct, an open-source low-fidelity aerostructural analysis and optimization tool developed in NASA’s OpenMDAO framework. It uses the coupled adjoint method to compute the derivatives required for efficient gradient-based optimization. OpenAeroStruct combines a vortex lattice method and 1-D finite-element analysis to model lifting surfaces, such as aircraft wings and tails, and uses the coupled-adjoint method to compute the aerostructural derivatives. We use the Breguet range equation to compute the fuel burn as a function of structural weight and aerodynamic performance. OpenAeroStruct has proved effective both as an educational tool and as a benchmark for researching new MDO methods. There is much more potential to be exploited as the research community continues to develop and use this tool.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-018-1912-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Aerodynamics ; Aircraft components ; Computational Mathematics and Numerical Analysis ; Derivatives ; Design optimization ; Educational Article ; Engineering ; Engineering Design ; Finite element method ; Lift devices ; Multidisciplinary design optimization ; Open source software ; Structural analysis ; Structural weight ; Teaching methods ; Theoretical and Applied Mechanics ; Vortex lattice method ; Wings (aircraft)</subject><ispartof>Structural and multidisciplinary optimization, 2018-04, Vol.57 (4), p.1815-1827</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-c0c064b44b18f4ffb3b232322a5e40185cd000aee6c1c18950407441ea2097103</citedby><cites>FETCH-LOGICAL-c344t-c0c064b44b18f4ffb3b232322a5e40185cd000aee6c1c18950407441ea2097103</cites><orcidid>0000-0001-5442-2792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-018-1912-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-018-1912-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Jasa, John P.</creatorcontrib><creatorcontrib>Hwang, John T.</creatorcontrib><creatorcontrib>Martins, Joaquim R. R. A.</creatorcontrib><title>Open-source coupled aerostructural optimization using Python</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>To teach multidisciplinary design optimization (MDO) to students effectively, it is useful to have accessible software that runs quickly, allowing hands-on exploration of coupled systems and optimization methods. Open-source software exists for low-fidelity aerodynamic or structural analysis, but there is no existing software for fast tightly coupled aerostructural analysis and design optimization. To address this need, we present OpenAeroStruct, an open-source low-fidelity aerostructural analysis and optimization tool developed in NASA’s OpenMDAO framework. It uses the coupled adjoint method to compute the derivatives required for efficient gradient-based optimization. OpenAeroStruct combines a vortex lattice method and 1-D finite-element analysis to model lifting surfaces, such as aircraft wings and tails, and uses the coupled-adjoint method to compute the aerostructural derivatives. We use the Breguet range equation to compute the fuel burn as a function of structural weight and aerodynamic performance. OpenAeroStruct has proved effective both as an educational tool and as a benchmark for researching new MDO methods. There is much more potential to be exploited as the research community continues to develop and use this tool.</description><subject>Accuracy</subject><subject>Aerodynamics</subject><subject>Aircraft components</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Derivatives</subject><subject>Design optimization</subject><subject>Educational Article</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Finite element method</subject><subject>Lift devices</subject><subject>Multidisciplinary design optimization</subject><subject>Open source software</subject><subject>Structural analysis</subject><subject>Structural weight</subject><subject>Teaching methods</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vortex lattice method</subject><subject>Wings (aircraft)</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kDFPwzAQhS0EEqXwA9giMRvuHMexJRZUQUGqVAaQ2CzHdUqqNgm2M5Rfj6sgmEA33A3fu3v3CLlEuEaA8iYAYCEpoKSokFF5RCYosKDIpTz-mcu3U3IWwgYAJHA1IbfL3rU0dIO3LrPd0G_dKjPOdyH6wcbBm23W9bHZNZ8mNl2bDaFp19nzPr537Tk5qc02uIvvPiWvD_cvs0e6WM6fZncLanPOI7VgQfCK8wplzeu6yiuWp2KmcDw5Luwq-THOCYsWpSqAQ8k5OsNAlQj5lFyNe3vffQwuRL1Jhtt0UjMmWCGkUOJfChhXCoXkicKRsunH4F2te9_sjN9rBH2IUo9R6mRMH6LUMmnYqAmJbdfO_27-W_QFKPl03Q</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Jasa, John P.</creator><creator>Hwang, John T.</creator><creator>Martins, Joaquim R. R. A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5442-2792</orcidid></search><sort><creationdate>20180401</creationdate><title>Open-source coupled aerostructural optimization using Python</title><author>Jasa, John P. ; Hwang, John T. ; Martins, Joaquim R. R. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-c0c064b44b18f4ffb3b232322a5e40185cd000aee6c1c18950407441ea2097103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Aerodynamics</topic><topic>Aircraft components</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Derivatives</topic><topic>Design optimization</topic><topic>Educational Article</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Finite element method</topic><topic>Lift devices</topic><topic>Multidisciplinary design optimization</topic><topic>Open source software</topic><topic>Structural analysis</topic><topic>Structural weight</topic><topic>Teaching methods</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vortex lattice method</topic><topic>Wings (aircraft)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jasa, John P.</creatorcontrib><creatorcontrib>Hwang, John T.</creatorcontrib><creatorcontrib>Martins, Joaquim R. R. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jasa, John P.</au><au>Hwang, John T.</au><au>Martins, Joaquim R. R. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open-source coupled aerostructural optimization using Python</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>57</volume><issue>4</issue><spage>1815</spage><epage>1827</epage><pages>1815-1827</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>To teach multidisciplinary design optimization (MDO) to students effectively, it is useful to have accessible software that runs quickly, allowing hands-on exploration of coupled systems and optimization methods. Open-source software exists for low-fidelity aerodynamic or structural analysis, but there is no existing software for fast tightly coupled aerostructural analysis and design optimization. To address this need, we present OpenAeroStruct, an open-source low-fidelity aerostructural analysis and optimization tool developed in NASA’s OpenMDAO framework. It uses the coupled adjoint method to compute the derivatives required for efficient gradient-based optimization. OpenAeroStruct combines a vortex lattice method and 1-D finite-element analysis to model lifting surfaces, such as aircraft wings and tails, and uses the coupled-adjoint method to compute the aerostructural derivatives. We use the Breguet range equation to compute the fuel burn as a function of structural weight and aerodynamic performance. OpenAeroStruct has proved effective both as an educational tool and as a benchmark for researching new MDO methods. There is much more potential to be exploited as the research community continues to develop and use this tool.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-018-1912-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5442-2792</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2018-04, Vol.57 (4), p.1815-1827 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2262568696 |
source | SpringerNature Journals |
subjects | Accuracy Aerodynamics Aircraft components Computational Mathematics and Numerical Analysis Derivatives Design optimization Educational Article Engineering Engineering Design Finite element method Lift devices Multidisciplinary design optimization Open source software Structural analysis Structural weight Teaching methods Theoretical and Applied Mechanics Vortex lattice method Wings (aircraft) |
title | Open-source coupled aerostructural optimization using Python |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T01%3A14%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open-source%20coupled%20aerostructural%20optimization%20using%20Python&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Jasa,%20John%20P.&rft.date=2018-04-01&rft.volume=57&rft.issue=4&rft.spage=1815&rft.epage=1827&rft.pages=1815-1827&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-018-1912-8&rft_dat=%3Cproquest_cross%3E2262568696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262568696&rft_id=info:pmid/&rfr_iscdi=true |