On the orthogonal similarity transformation (OST)-based sensitivity analysis method for robust topology optimization under loading uncertainty: a mathematical proof and its extension

The main purpose of this work is to provide a mathematical proof of our previously proposed orthogonal similarity transformation (OST)-based sensitivity analysis method (Zhao et al. Struct Multidisc Optim 50(3):517–522 2014a , Comput Methods Appl Mech Engrg 273:204–218 c ); the proof is designed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2018-07, Vol.58 (1), p.51-60
Hauptverfasser: Zhao, Junpeng, Youn, Byeng Dong, Yoon, Heonjun, Fu, Zhifang, Wang, Chunjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 51
container_title Structural and multidisciplinary optimization
container_volume 58
creator Zhao, Junpeng
Youn, Byeng Dong
Yoon, Heonjun
Fu, Zhifang
Wang, Chunjie
description The main purpose of this work is to provide a mathematical proof of our previously proposed orthogonal similarity transformation (OST)-based sensitivity analysis method (Zhao et al. Struct Multidisc Optim 50(3):517–522 2014a , Comput Methods Appl Mech Engrg 273:204–218 c ); the proof is designed to show the method’s computational effectiveness. Theoretical study of computational efficiency for both robust topology optimization and robust concurrent topology optimization problems shows the necessity of the OST-based sensitivity analysis method for practical problems. Numerical studies were conducted to demonstrate the computational accuracy of the OST-based sensitivity analysis method and its efficiency over the conventional method. The research leads us to conclude that the OST-based sensitivity analysis method can bring considerable computational savings when used for large-scale robust topology optimization problems, as well as robust concurrent topology optimization problems.
doi_str_mv 10.1007/s00158-018-2013-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262566076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262566076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-4a3ca08ccc0fa1462c77239dfd3ea1c8e86f89038b9dd21d680feaa2a67c4b733</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSNEJUrLB-BmiQscAmPHSRxuqOJPpUp7aJG4WbO2s-sqay8eb0X4YP18OAqCE5zGI_3ee2O9qnrJ4S0H6N8RAG9VDVzVAnhTyyfVOe94W3Op1NM_7_7bs-o50T0AKJDDefW4CSzvHYsp7-MuBpwY-YOfMPk8s5ww0BjTAbOPgb3e3N69qbdIzjJygXz2DwuGRTaTJ3ZwxcWyomApbk-UWY7HOMXdzOIxF9-fq9EpWJfYFNH6sCubcSmjD3l-z5CVsL1bEk055phiHEuAZT4Tcz_yEhvDZXU24kTuxe95UX399PHu6kt9s_l8ffXhpjaNlLmW2BgEZYyBEbnshOl70Qx2tI1DbpRT3agGaNR2sFZw2ykYHaLArjdy2zfNRfVq9S13fD85yvo-nlL5LmkhOtF2HfTdfylo-4EXqC0UXymTIlFyoz4mf8A0aw56KVGvJepSol5K1LJoxKqhwoadS3-d_y36BRDCpLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262566076</pqid></control><display><type>article</type><title>On the orthogonal similarity transformation (OST)-based sensitivity analysis method for robust topology optimization under loading uncertainty: a mathematical proof and its extension</title><source>SpringerNature Journals</source><creator>Zhao, Junpeng ; Youn, Byeng Dong ; Yoon, Heonjun ; Fu, Zhifang ; Wang, Chunjie</creator><creatorcontrib>Zhao, Junpeng ; Youn, Byeng Dong ; Yoon, Heonjun ; Fu, Zhifang ; Wang, Chunjie</creatorcontrib><description>The main purpose of this work is to provide a mathematical proof of our previously proposed orthogonal similarity transformation (OST)-based sensitivity analysis method (Zhao et al. Struct Multidisc Optim 50(3):517–522 2014a , Comput Methods Appl Mech Engrg 273:204–218 c ); the proof is designed to show the method’s computational effectiveness. Theoretical study of computational efficiency for both robust topology optimization and robust concurrent topology optimization problems shows the necessity of the OST-based sensitivity analysis method for practical problems. Numerical studies were conducted to demonstrate the computational accuracy of the OST-based sensitivity analysis method and its efficiency over the conventional method. The research leads us to conclude that the OST-based sensitivity analysis method can bring considerable computational savings when used for large-scale robust topology optimization problems, as well as robust concurrent topology optimization problems.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-018-2013-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational Mathematics and Numerical Analysis ; Computing time ; Economic models ; Engineering ; Engineering Design ; Mathematical analysis ; Research Paper ; Robustness (mathematics) ; Sensitivity analysis ; Similarity ; Theoretical and Applied Mechanics ; Topology optimization ; Transformations</subject><ispartof>Structural and multidisciplinary optimization, 2018-07, Vol.58 (1), p.51-60</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-4a3ca08ccc0fa1462c77239dfd3ea1c8e86f89038b9dd21d680feaa2a67c4b733</citedby><cites>FETCH-LOGICAL-c344t-4a3ca08ccc0fa1462c77239dfd3ea1c8e86f89038b9dd21d680feaa2a67c4b733</cites><orcidid>0000-0003-0135-3660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-018-2013-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-018-2013-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhao, Junpeng</creatorcontrib><creatorcontrib>Youn, Byeng Dong</creatorcontrib><creatorcontrib>Yoon, Heonjun</creatorcontrib><creatorcontrib>Fu, Zhifang</creatorcontrib><creatorcontrib>Wang, Chunjie</creatorcontrib><title>On the orthogonal similarity transformation (OST)-based sensitivity analysis method for robust topology optimization under loading uncertainty: a mathematical proof and its extension</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>The main purpose of this work is to provide a mathematical proof of our previously proposed orthogonal similarity transformation (OST)-based sensitivity analysis method (Zhao et al. Struct Multidisc Optim 50(3):517–522 2014a , Comput Methods Appl Mech Engrg 273:204–218 c ); the proof is designed to show the method’s computational effectiveness. Theoretical study of computational efficiency for both robust topology optimization and robust concurrent topology optimization problems shows the necessity of the OST-based sensitivity analysis method for practical problems. Numerical studies were conducted to demonstrate the computational accuracy of the OST-based sensitivity analysis method and its efficiency over the conventional method. The research leads us to conclude that the OST-based sensitivity analysis method can bring considerable computational savings when used for large-scale robust topology optimization problems, as well as robust concurrent topology optimization problems.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computing time</subject><subject>Economic models</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Mathematical analysis</subject><subject>Research Paper</subject><subject>Robustness (mathematics)</subject><subject>Sensitivity analysis</subject><subject>Similarity</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><subject>Transformations</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU9v1DAQxSNEJUrLB-BmiQscAmPHSRxuqOJPpUp7aJG4WbO2s-sqay8eb0X4YP18OAqCE5zGI_3ee2O9qnrJ4S0H6N8RAG9VDVzVAnhTyyfVOe94W3Op1NM_7_7bs-o50T0AKJDDefW4CSzvHYsp7-MuBpwY-YOfMPk8s5ww0BjTAbOPgb3e3N69qbdIzjJygXz2DwuGRTaTJ3ZwxcWyomApbk-UWY7HOMXdzOIxF9-fq9EpWJfYFNH6sCubcSmjD3l-z5CVsL1bEk055phiHEuAZT4Tcz_yEhvDZXU24kTuxe95UX399PHu6kt9s_l8ffXhpjaNlLmW2BgEZYyBEbnshOl70Qx2tI1DbpRT3agGaNR2sFZw2ykYHaLArjdy2zfNRfVq9S13fD85yvo-nlL5LmkhOtF2HfTdfylo-4EXqC0UXymTIlFyoz4mf8A0aw56KVGvJepSol5K1LJoxKqhwoadS3-d_y36BRDCpLE</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Zhao, Junpeng</creator><creator>Youn, Byeng Dong</creator><creator>Yoon, Heonjun</creator><creator>Fu, Zhifang</creator><creator>Wang, Chunjie</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0135-3660</orcidid></search><sort><creationdate>20180701</creationdate><title>On the orthogonal similarity transformation (OST)-based sensitivity analysis method for robust topology optimization under loading uncertainty: a mathematical proof and its extension</title><author>Zhao, Junpeng ; Youn, Byeng Dong ; Yoon, Heonjun ; Fu, Zhifang ; Wang, Chunjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-4a3ca08ccc0fa1462c77239dfd3ea1c8e86f89038b9dd21d680feaa2a67c4b733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computing time</topic><topic>Economic models</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Mathematical analysis</topic><topic>Research Paper</topic><topic>Robustness (mathematics)</topic><topic>Sensitivity analysis</topic><topic>Similarity</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Junpeng</creatorcontrib><creatorcontrib>Youn, Byeng Dong</creatorcontrib><creatorcontrib>Yoon, Heonjun</creatorcontrib><creatorcontrib>Fu, Zhifang</creatorcontrib><creatorcontrib>Wang, Chunjie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Junpeng</au><au>Youn, Byeng Dong</au><au>Yoon, Heonjun</au><au>Fu, Zhifang</au><au>Wang, Chunjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the orthogonal similarity transformation (OST)-based sensitivity analysis method for robust topology optimization under loading uncertainty: a mathematical proof and its extension</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>58</volume><issue>1</issue><spage>51</spage><epage>60</epage><pages>51-60</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>The main purpose of this work is to provide a mathematical proof of our previously proposed orthogonal similarity transformation (OST)-based sensitivity analysis method (Zhao et al. Struct Multidisc Optim 50(3):517–522 2014a , Comput Methods Appl Mech Engrg 273:204–218 c ); the proof is designed to show the method’s computational effectiveness. Theoretical study of computational efficiency for both robust topology optimization and robust concurrent topology optimization problems shows the necessity of the OST-based sensitivity analysis method for practical problems. Numerical studies were conducted to demonstrate the computational accuracy of the OST-based sensitivity analysis method and its efficiency over the conventional method. The research leads us to conclude that the OST-based sensitivity analysis method can bring considerable computational savings when used for large-scale robust topology optimization problems, as well as robust concurrent topology optimization problems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-018-2013-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0135-3660</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2018-07, Vol.58 (1), p.51-60
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2262566076
source SpringerNature Journals
subjects Computational Mathematics and Numerical Analysis
Computing time
Economic models
Engineering
Engineering Design
Mathematical analysis
Research Paper
Robustness (mathematics)
Sensitivity analysis
Similarity
Theoretical and Applied Mechanics
Topology optimization
Transformations
title On the orthogonal similarity transformation (OST)-based sensitivity analysis method for robust topology optimization under loading uncertainty: a mathematical proof and its extension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20orthogonal%20similarity%20transformation%20(OST)-based%20sensitivity%20analysis%20method%20for%20robust%20topology%20optimization%20under%20loading%20uncertainty:%20a%20mathematical%20proof%20and%20its%20extension&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Zhao,%20Junpeng&rft.date=2018-07-01&rft.volume=58&rft.issue=1&rft.spage=51&rft.epage=60&rft.pages=51-60&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-018-2013-4&rft_dat=%3Cproquest_cross%3E2262566076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262566076&rft_id=info:pmid/&rfr_iscdi=true