On the orthogonal similarity transformation (OST)-based sensitivity analysis method for robust topology optimization under loading uncertainty: a mathematical proof and its extension
The main purpose of this work is to provide a mathematical proof of our previously proposed orthogonal similarity transformation (OST)-based sensitivity analysis method (Zhao et al. Struct Multidisc Optim 50(3):517–522 2014a , Comput Methods Appl Mech Engrg 273:204–218 c ); the proof is designed to...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2018-07, Vol.58 (1), p.51-60 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | 1 |
container_start_page | 51 |
container_title | Structural and multidisciplinary optimization |
container_volume | 58 |
creator | Zhao, Junpeng Youn, Byeng Dong Yoon, Heonjun Fu, Zhifang Wang, Chunjie |
description | The main purpose of this work is to provide a mathematical proof of our previously proposed orthogonal similarity transformation (OST)-based sensitivity analysis method (Zhao et al. Struct Multidisc Optim 50(3):517–522
2014a
, Comput Methods Appl Mech Engrg 273:204–218
c
); the proof is designed to show the method’s computational effectiveness. Theoretical study of computational efficiency for both robust topology optimization and robust concurrent topology optimization problems shows the necessity of the OST-based sensitivity analysis method for practical problems. Numerical studies were conducted to demonstrate the computational accuracy of the OST-based sensitivity analysis method and its efficiency over the conventional method. The research leads us to conclude that the OST-based sensitivity analysis method can bring considerable computational savings when used for large-scale robust topology optimization problems, as well as robust concurrent topology optimization problems. |
doi_str_mv | 10.1007/s00158-018-2013-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262566076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262566076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-4a3ca08ccc0fa1462c77239dfd3ea1c8e86f89038b9dd21d680feaa2a67c4b733</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSNEJUrLB-BmiQscAmPHSRxuqOJPpUp7aJG4WbO2s-sqay8eb0X4YP18OAqCE5zGI_3ee2O9qnrJ4S0H6N8RAG9VDVzVAnhTyyfVOe94W3Op1NM_7_7bs-o50T0AKJDDefW4CSzvHYsp7-MuBpwY-YOfMPk8s5ww0BjTAbOPgb3e3N69qbdIzjJygXz2DwuGRTaTJ3ZwxcWyomApbk-UWY7HOMXdzOIxF9-fq9EpWJfYFNH6sCubcSmjD3l-z5CVsL1bEk055phiHEuAZT4Tcz_yEhvDZXU24kTuxe95UX399PHu6kt9s_l8ffXhpjaNlLmW2BgEZYyBEbnshOl70Qx2tI1DbpRT3agGaNR2sFZw2ykYHaLArjdy2zfNRfVq9S13fD85yvo-nlL5LmkhOtF2HfTdfylo-4EXqC0UXymTIlFyoz4mf8A0aw56KVGvJepSol5K1LJoxKqhwoadS3-d_y36BRDCpLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262566076</pqid></control><display><type>article</type><title>On the orthogonal similarity transformation (OST)-based sensitivity analysis method for robust topology optimization under loading uncertainty: a mathematical proof and its extension</title><source>SpringerNature Journals</source><creator>Zhao, Junpeng ; Youn, Byeng Dong ; Yoon, Heonjun ; Fu, Zhifang ; Wang, Chunjie</creator><creatorcontrib>Zhao, Junpeng ; Youn, Byeng Dong ; Yoon, Heonjun ; Fu, Zhifang ; Wang, Chunjie</creatorcontrib><description>The main purpose of this work is to provide a mathematical proof of our previously proposed orthogonal similarity transformation (OST)-based sensitivity analysis method (Zhao et al. Struct Multidisc Optim 50(3):517–522
2014a
, Comput Methods Appl Mech Engrg 273:204–218
c
); the proof is designed to show the method’s computational effectiveness. Theoretical study of computational efficiency for both robust topology optimization and robust concurrent topology optimization problems shows the necessity of the OST-based sensitivity analysis method for practical problems. Numerical studies were conducted to demonstrate the computational accuracy of the OST-based sensitivity analysis method and its efficiency over the conventional method. The research leads us to conclude that the OST-based sensitivity analysis method can bring considerable computational savings when used for large-scale robust topology optimization problems, as well as robust concurrent topology optimization problems.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-018-2013-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational Mathematics and Numerical Analysis ; Computing time ; Economic models ; Engineering ; Engineering Design ; Mathematical analysis ; Research Paper ; Robustness (mathematics) ; Sensitivity analysis ; Similarity ; Theoretical and Applied Mechanics ; Topology optimization ; Transformations</subject><ispartof>Structural and multidisciplinary optimization, 2018-07, Vol.58 (1), p.51-60</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-4a3ca08ccc0fa1462c77239dfd3ea1c8e86f89038b9dd21d680feaa2a67c4b733</citedby><cites>FETCH-LOGICAL-c344t-4a3ca08ccc0fa1462c77239dfd3ea1c8e86f89038b9dd21d680feaa2a67c4b733</cites><orcidid>0000-0003-0135-3660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-018-2013-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-018-2013-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhao, Junpeng</creatorcontrib><creatorcontrib>Youn, Byeng Dong</creatorcontrib><creatorcontrib>Yoon, Heonjun</creatorcontrib><creatorcontrib>Fu, Zhifang</creatorcontrib><creatorcontrib>Wang, Chunjie</creatorcontrib><title>On the orthogonal similarity transformation (OST)-based sensitivity analysis method for robust topology optimization under loading uncertainty: a mathematical proof and its extension</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>The main purpose of this work is to provide a mathematical proof of our previously proposed orthogonal similarity transformation (OST)-based sensitivity analysis method (Zhao et al. Struct Multidisc Optim 50(3):517–522
2014a
, Comput Methods Appl Mech Engrg 273:204–218
c
); the proof is designed to show the method’s computational effectiveness. Theoretical study of computational efficiency for both robust topology optimization and robust concurrent topology optimization problems shows the necessity of the OST-based sensitivity analysis method for practical problems. Numerical studies were conducted to demonstrate the computational accuracy of the OST-based sensitivity analysis method and its efficiency over the conventional method. The research leads us to conclude that the OST-based sensitivity analysis method can bring considerable computational savings when used for large-scale robust topology optimization problems, as well as robust concurrent topology optimization problems.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computing time</subject><subject>Economic models</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Mathematical analysis</subject><subject>Research Paper</subject><subject>Robustness (mathematics)</subject><subject>Sensitivity analysis</subject><subject>Similarity</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><subject>Transformations</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU9v1DAQxSNEJUrLB-BmiQscAmPHSRxuqOJPpUp7aJG4WbO2s-sqay8eb0X4YP18OAqCE5zGI_3ee2O9qnrJ4S0H6N8RAG9VDVzVAnhTyyfVOe94W3Op1NM_7_7bs-o50T0AKJDDefW4CSzvHYsp7-MuBpwY-YOfMPk8s5ww0BjTAbOPgb3e3N69qbdIzjJygXz2DwuGRTaTJ3ZwxcWyomApbk-UWY7HOMXdzOIxF9-fq9EpWJfYFNH6sCubcSmjD3l-z5CVsL1bEk055phiHEuAZT4Tcz_yEhvDZXU24kTuxe95UX399PHu6kt9s_l8ffXhpjaNlLmW2BgEZYyBEbnshOl70Qx2tI1DbpRT3agGaNR2sFZw2ykYHaLArjdy2zfNRfVq9S13fD85yvo-nlL5LmkhOtF2HfTdfylo-4EXqC0UXymTIlFyoz4mf8A0aw56KVGvJepSol5K1LJoxKqhwoadS3-d_y36BRDCpLE</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Zhao, Junpeng</creator><creator>Youn, Byeng Dong</creator><creator>Yoon, Heonjun</creator><creator>Fu, Zhifang</creator><creator>Wang, Chunjie</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0135-3660</orcidid></search><sort><creationdate>20180701</creationdate><title>On the orthogonal similarity transformation (OST)-based sensitivity analysis method for robust topology optimization under loading uncertainty: a mathematical proof and its extension</title><author>Zhao, Junpeng ; Youn, Byeng Dong ; Yoon, Heonjun ; Fu, Zhifang ; Wang, Chunjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-4a3ca08ccc0fa1462c77239dfd3ea1c8e86f89038b9dd21d680feaa2a67c4b733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computing time</topic><topic>Economic models</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Mathematical analysis</topic><topic>Research Paper</topic><topic>Robustness (mathematics)</topic><topic>Sensitivity analysis</topic><topic>Similarity</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Junpeng</creatorcontrib><creatorcontrib>Youn, Byeng Dong</creatorcontrib><creatorcontrib>Yoon, Heonjun</creatorcontrib><creatorcontrib>Fu, Zhifang</creatorcontrib><creatorcontrib>Wang, Chunjie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Junpeng</au><au>Youn, Byeng Dong</au><au>Yoon, Heonjun</au><au>Fu, Zhifang</au><au>Wang, Chunjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the orthogonal similarity transformation (OST)-based sensitivity analysis method for robust topology optimization under loading uncertainty: a mathematical proof and its extension</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>58</volume><issue>1</issue><spage>51</spage><epage>60</epage><pages>51-60</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>The main purpose of this work is to provide a mathematical proof of our previously proposed orthogonal similarity transformation (OST)-based sensitivity analysis method (Zhao et al. Struct Multidisc Optim 50(3):517–522
2014a
, Comput Methods Appl Mech Engrg 273:204–218
c
); the proof is designed to show the method’s computational effectiveness. Theoretical study of computational efficiency for both robust topology optimization and robust concurrent topology optimization problems shows the necessity of the OST-based sensitivity analysis method for practical problems. Numerical studies were conducted to demonstrate the computational accuracy of the OST-based sensitivity analysis method and its efficiency over the conventional method. The research leads us to conclude that the OST-based sensitivity analysis method can bring considerable computational savings when used for large-scale robust topology optimization problems, as well as robust concurrent topology optimization problems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-018-2013-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0135-3660</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2018-07, Vol.58 (1), p.51-60 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2262566076 |
source | SpringerNature Journals |
subjects | Computational Mathematics and Numerical Analysis Computing time Economic models Engineering Engineering Design Mathematical analysis Research Paper Robustness (mathematics) Sensitivity analysis Similarity Theoretical and Applied Mechanics Topology optimization Transformations |
title | On the orthogonal similarity transformation (OST)-based sensitivity analysis method for robust topology optimization under loading uncertainty: a mathematical proof and its extension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20orthogonal%20similarity%20transformation%20(OST)-based%20sensitivity%20analysis%20method%20for%20robust%20topology%20optimization%20under%20loading%20uncertainty:%20a%20mathematical%20proof%20and%20its%20extension&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Zhao,%20Junpeng&rft.date=2018-07-01&rft.volume=58&rft.issue=1&rft.spage=51&rft.epage=60&rft.pages=51-60&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-018-2013-4&rft_dat=%3Cproquest_cross%3E2262566076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262566076&rft_id=info:pmid/&rfr_iscdi=true |