A sequential sampling strategy for adaptive classification of computationally expensive data
Many real-world problems in engineering can be represented and solved as a data-driven classification problem, where the goal is to build a classifier that maps a given set of input parameters onto a corresponding class or label. In some cases, the collection of data samples can be computationally e...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2017-04, Vol.55 (4), p.1425-1438 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1438 |
---|---|
container_issue | 4 |
container_start_page | 1425 |
container_title | Structural and multidisciplinary optimization |
container_volume | 55 |
creator | Singh, Prashant Herten, Joachim van der Deschrijver, Dirk Couckuyt, Ivo Dhaene, Tom |
description | Many real-world problems in engineering can be represented and solved as a data-driven classification problem, where the goal is to build a classifier that maps a given set of input parameters onto a corresponding class or label. In some cases, the collection of data samples can be computationally expensive. It is therefore crucial to solve the problem using as little data as possible. To this end, a novel sequential sampling algorithm is proposed that begins with a very small training set and supplements it in each iteration by a small batch of additional (expensive) data points. The outcome is a representative set of data samples that focuses the sampling on those locations in the input space where the class labels are changing more rapidly, while making sure that no class regions are missed. |
doi_str_mv | 10.1007/s00158-016-1584-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262565185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1881810333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-a8897093639459de79d00ad2b7c95db6d1e7d0dbff4eb838ca5a8db716a638993</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG8Bz9WZtkmT47L4DwQvCh6EMG3SpUu3rUlW3G9v14p40bm8Gfi9YeYxdo5wiQDFVQBAoRJAmYyaJ3jAZihRJJgrdfjTFy_H7CSENQAoyPWMvS54cG9b18WGWh5oM7RNt-IheoputeN17zlZGmLz7njVUghN3VQUm77jfc2rfjNs49dIbbvj7mNwXdizliKdsqOa2uDOvnXOnm-un5Z3ycPj7f1y8ZBUWZ7HhJTSBehMZjoX2rpCWwCyaVlUWthSWnSFBVvWde5KlamKBClbFihJZkrrbM4upr2D78dfQjTrfuvHi4JJU5kKKVCJ_yhUChVCNtac4URVvg_Bu9oMvtmQ3xkEs4_aTFGbMWqzj9rg6EknTxjZbuX8r81_mj4Bn_CCEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262565185</pqid></control><display><type>article</type><title>A sequential sampling strategy for adaptive classification of computationally expensive data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Singh, Prashant ; Herten, Joachim van der ; Deschrijver, Dirk ; Couckuyt, Ivo ; Dhaene, Tom</creator><creatorcontrib>Singh, Prashant ; Herten, Joachim van der ; Deschrijver, Dirk ; Couckuyt, Ivo ; Dhaene, Tom</creatorcontrib><description>Many real-world problems in engineering can be represented and solved as a data-driven classification problem, where the goal is to build a classifier that maps a given set of input parameters onto a corresponding class or label. In some cases, the collection of data samples can be computationally expensive. It is therefore crucial to solve the problem using as little data as possible. To this end, a novel sequential sampling algorithm is proposed that begins with a very small training set and supplements it in each iteration by a small batch of additional (expensive) data points. The outcome is a representative set of data samples that focuses the sampling on those locations in the input space where the class labels are changing more rapidly, while making sure that no class regions are missed.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-016-1584-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive sampling ; Algorithms ; Classification ; Computational Mathematics and Numerical Analysis ; Data points ; Engineering ; Engineering Design ; Iterative methods ; Monte Carlo simulation ; Research Paper ; Sequential sampling ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2017-04, Vol.55 (4), p.1425-1438</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-a8897093639459de79d00ad2b7c95db6d1e7d0dbff4eb838ca5a8db716a638993</citedby><cites>FETCH-LOGICAL-c344t-a8897093639459de79d00ad2b7c95db6d1e7d0dbff4eb838ca5a8db716a638993</cites><orcidid>0000-0002-3123-3478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-016-1584-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-016-1584-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Singh, Prashant</creatorcontrib><creatorcontrib>Herten, Joachim van der</creatorcontrib><creatorcontrib>Deschrijver, Dirk</creatorcontrib><creatorcontrib>Couckuyt, Ivo</creatorcontrib><creatorcontrib>Dhaene, Tom</creatorcontrib><title>A sequential sampling strategy for adaptive classification of computationally expensive data</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>Many real-world problems in engineering can be represented and solved as a data-driven classification problem, where the goal is to build a classifier that maps a given set of input parameters onto a corresponding class or label. In some cases, the collection of data samples can be computationally expensive. It is therefore crucial to solve the problem using as little data as possible. To this end, a novel sequential sampling algorithm is proposed that begins with a very small training set and supplements it in each iteration by a small batch of additional (expensive) data points. The outcome is a representative set of data samples that focuses the sampling on those locations in the input space where the class labels are changing more rapidly, while making sure that no class regions are missed.</description><subject>Adaptive sampling</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Data points</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Iterative methods</subject><subject>Monte Carlo simulation</subject><subject>Research Paper</subject><subject>Sequential sampling</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AG8Bz9WZtkmT47L4DwQvCh6EMG3SpUu3rUlW3G9v14p40bm8Gfi9YeYxdo5wiQDFVQBAoRJAmYyaJ3jAZihRJJgrdfjTFy_H7CSENQAoyPWMvS54cG9b18WGWh5oM7RNt-IheoputeN17zlZGmLz7njVUghN3VQUm77jfc2rfjNs49dIbbvj7mNwXdizliKdsqOa2uDOvnXOnm-un5Z3ycPj7f1y8ZBUWZ7HhJTSBehMZjoX2rpCWwCyaVlUWthSWnSFBVvWde5KlamKBClbFihJZkrrbM4upr2D78dfQjTrfuvHi4JJU5kKKVCJ_yhUChVCNtac4URVvg_Bu9oMvtmQ3xkEs4_aTFGbMWqzj9rg6EknTxjZbuX8r81_mj4Bn_CCEw</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Singh, Prashant</creator><creator>Herten, Joachim van der</creator><creator>Deschrijver, Dirk</creator><creator>Couckuyt, Ivo</creator><creator>Dhaene, Tom</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3123-3478</orcidid></search><sort><creationdate>20170401</creationdate><title>A sequential sampling strategy for adaptive classification of computationally expensive data</title><author>Singh, Prashant ; Herten, Joachim van der ; Deschrijver, Dirk ; Couckuyt, Ivo ; Dhaene, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-a8897093639459de79d00ad2b7c95db6d1e7d0dbff4eb838ca5a8db716a638993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive sampling</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Data points</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Iterative methods</topic><topic>Monte Carlo simulation</topic><topic>Research Paper</topic><topic>Sequential sampling</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Prashant</creatorcontrib><creatorcontrib>Herten, Joachim van der</creatorcontrib><creatorcontrib>Deschrijver, Dirk</creatorcontrib><creatorcontrib>Couckuyt, Ivo</creatorcontrib><creatorcontrib>Dhaene, Tom</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Prashant</au><au>Herten, Joachim van der</au><au>Deschrijver, Dirk</au><au>Couckuyt, Ivo</au><au>Dhaene, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sequential sampling strategy for adaptive classification of computationally expensive data</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>55</volume><issue>4</issue><spage>1425</spage><epage>1438</epage><pages>1425-1438</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>Many real-world problems in engineering can be represented and solved as a data-driven classification problem, where the goal is to build a classifier that maps a given set of input parameters onto a corresponding class or label. In some cases, the collection of data samples can be computationally expensive. It is therefore crucial to solve the problem using as little data as possible. To this end, a novel sequential sampling algorithm is proposed that begins with a very small training set and supplements it in each iteration by a small batch of additional (expensive) data points. The outcome is a representative set of data samples that focuses the sampling on those locations in the input space where the class labels are changing more rapidly, while making sure that no class regions are missed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-016-1584-1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3123-3478</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2017-04, Vol.55 (4), p.1425-1438 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2262565185 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adaptive sampling Algorithms Classification Computational Mathematics and Numerical Analysis Data points Engineering Engineering Design Iterative methods Monte Carlo simulation Research Paper Sequential sampling Theoretical and Applied Mechanics |
title | A sequential sampling strategy for adaptive classification of computationally expensive data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A07%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sequential%20sampling%20strategy%20for%20adaptive%20classification%20of%20computationally%20expensive%20data&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Singh,%20Prashant&rft.date=2017-04-01&rft.volume=55&rft.issue=4&rft.spage=1425&rft.epage=1438&rft.pages=1425-1438&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-016-1584-1&rft_dat=%3Cproquest_cross%3E1881810333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262565185&rft_id=info:pmid/&rfr_iscdi=true |