A sequential sampling strategy for adaptive classification of computationally expensive data

Many real-world problems in engineering can be represented and solved as a data-driven classification problem, where the goal is to build a classifier that maps a given set of input parameters onto a corresponding class or label. In some cases, the collection of data samples can be computationally e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2017-04, Vol.55 (4), p.1425-1438
Hauptverfasser: Singh, Prashant, Herten, Joachim van der, Deschrijver, Dirk, Couckuyt, Ivo, Dhaene, Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1438
container_issue 4
container_start_page 1425
container_title Structural and multidisciplinary optimization
container_volume 55
creator Singh, Prashant
Herten, Joachim van der
Deschrijver, Dirk
Couckuyt, Ivo
Dhaene, Tom
description Many real-world problems in engineering can be represented and solved as a data-driven classification problem, where the goal is to build a classifier that maps a given set of input parameters onto a corresponding class or label. In some cases, the collection of data samples can be computationally expensive. It is therefore crucial to solve the problem using as little data as possible. To this end, a novel sequential sampling algorithm is proposed that begins with a very small training set and supplements it in each iteration by a small batch of additional (expensive) data points. The outcome is a representative set of data samples that focuses the sampling on those locations in the input space where the class labels are changing more rapidly, while making sure that no class regions are missed.
doi_str_mv 10.1007/s00158-016-1584-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262565185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1881810333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-a8897093639459de79d00ad2b7c95db6d1e7d0dbff4eb838ca5a8db716a638993</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG8Bz9WZtkmT47L4DwQvCh6EMG3SpUu3rUlW3G9v14p40bm8Gfi9YeYxdo5wiQDFVQBAoRJAmYyaJ3jAZihRJJgrdfjTFy_H7CSENQAoyPWMvS54cG9b18WGWh5oM7RNt-IheoputeN17zlZGmLz7njVUghN3VQUm77jfc2rfjNs49dIbbvj7mNwXdizliKdsqOa2uDOvnXOnm-un5Z3ycPj7f1y8ZBUWZ7HhJTSBehMZjoX2rpCWwCyaVlUWthSWnSFBVvWde5KlamKBClbFihJZkrrbM4upr2D78dfQjTrfuvHi4JJU5kKKVCJ_yhUChVCNtac4URVvg_Bu9oMvtmQ3xkEs4_aTFGbMWqzj9rg6EknTxjZbuX8r81_mj4Bn_CCEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262565185</pqid></control><display><type>article</type><title>A sequential sampling strategy for adaptive classification of computationally expensive data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Singh, Prashant ; Herten, Joachim van der ; Deschrijver, Dirk ; Couckuyt, Ivo ; Dhaene, Tom</creator><creatorcontrib>Singh, Prashant ; Herten, Joachim van der ; Deschrijver, Dirk ; Couckuyt, Ivo ; Dhaene, Tom</creatorcontrib><description>Many real-world problems in engineering can be represented and solved as a data-driven classification problem, where the goal is to build a classifier that maps a given set of input parameters onto a corresponding class or label. In some cases, the collection of data samples can be computationally expensive. It is therefore crucial to solve the problem using as little data as possible. To this end, a novel sequential sampling algorithm is proposed that begins with a very small training set and supplements it in each iteration by a small batch of additional (expensive) data points. The outcome is a representative set of data samples that focuses the sampling on those locations in the input space where the class labels are changing more rapidly, while making sure that no class regions are missed.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-016-1584-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive sampling ; Algorithms ; Classification ; Computational Mathematics and Numerical Analysis ; Data points ; Engineering ; Engineering Design ; Iterative methods ; Monte Carlo simulation ; Research Paper ; Sequential sampling ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2017-04, Vol.55 (4), p.1425-1438</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-a8897093639459de79d00ad2b7c95db6d1e7d0dbff4eb838ca5a8db716a638993</citedby><cites>FETCH-LOGICAL-c344t-a8897093639459de79d00ad2b7c95db6d1e7d0dbff4eb838ca5a8db716a638993</cites><orcidid>0000-0002-3123-3478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-016-1584-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-016-1584-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Singh, Prashant</creatorcontrib><creatorcontrib>Herten, Joachim van der</creatorcontrib><creatorcontrib>Deschrijver, Dirk</creatorcontrib><creatorcontrib>Couckuyt, Ivo</creatorcontrib><creatorcontrib>Dhaene, Tom</creatorcontrib><title>A sequential sampling strategy for adaptive classification of computationally expensive data</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>Many real-world problems in engineering can be represented and solved as a data-driven classification problem, where the goal is to build a classifier that maps a given set of input parameters onto a corresponding class or label. In some cases, the collection of data samples can be computationally expensive. It is therefore crucial to solve the problem using as little data as possible. To this end, a novel sequential sampling algorithm is proposed that begins with a very small training set and supplements it in each iteration by a small batch of additional (expensive) data points. The outcome is a representative set of data samples that focuses the sampling on those locations in the input space where the class labels are changing more rapidly, while making sure that no class regions are missed.</description><subject>Adaptive sampling</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Data points</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Iterative methods</subject><subject>Monte Carlo simulation</subject><subject>Research Paper</subject><subject>Sequential sampling</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AG8Bz9WZtkmT47L4DwQvCh6EMG3SpUu3rUlW3G9v14p40bm8Gfi9YeYxdo5wiQDFVQBAoRJAmYyaJ3jAZihRJJgrdfjTFy_H7CSENQAoyPWMvS54cG9b18WGWh5oM7RNt-IheoputeN17zlZGmLz7njVUghN3VQUm77jfc2rfjNs49dIbbvj7mNwXdizliKdsqOa2uDOvnXOnm-un5Z3ycPj7f1y8ZBUWZ7HhJTSBehMZjoX2rpCWwCyaVlUWthSWnSFBVvWde5KlamKBClbFihJZkrrbM4upr2D78dfQjTrfuvHi4JJU5kKKVCJ_yhUChVCNtac4URVvg_Bu9oMvtmQ3xkEs4_aTFGbMWqzj9rg6EknTxjZbuX8r81_mj4Bn_CCEw</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Singh, Prashant</creator><creator>Herten, Joachim van der</creator><creator>Deschrijver, Dirk</creator><creator>Couckuyt, Ivo</creator><creator>Dhaene, Tom</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3123-3478</orcidid></search><sort><creationdate>20170401</creationdate><title>A sequential sampling strategy for adaptive classification of computationally expensive data</title><author>Singh, Prashant ; Herten, Joachim van der ; Deschrijver, Dirk ; Couckuyt, Ivo ; Dhaene, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-a8897093639459de79d00ad2b7c95db6d1e7d0dbff4eb838ca5a8db716a638993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive sampling</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Data points</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Iterative methods</topic><topic>Monte Carlo simulation</topic><topic>Research Paper</topic><topic>Sequential sampling</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Prashant</creatorcontrib><creatorcontrib>Herten, Joachim van der</creatorcontrib><creatorcontrib>Deschrijver, Dirk</creatorcontrib><creatorcontrib>Couckuyt, Ivo</creatorcontrib><creatorcontrib>Dhaene, Tom</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Prashant</au><au>Herten, Joachim van der</au><au>Deschrijver, Dirk</au><au>Couckuyt, Ivo</au><au>Dhaene, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sequential sampling strategy for adaptive classification of computationally expensive data</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>55</volume><issue>4</issue><spage>1425</spage><epage>1438</epage><pages>1425-1438</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>Many real-world problems in engineering can be represented and solved as a data-driven classification problem, where the goal is to build a classifier that maps a given set of input parameters onto a corresponding class or label. In some cases, the collection of data samples can be computationally expensive. It is therefore crucial to solve the problem using as little data as possible. To this end, a novel sequential sampling algorithm is proposed that begins with a very small training set and supplements it in each iteration by a small batch of additional (expensive) data points. The outcome is a representative set of data samples that focuses the sampling on those locations in the input space where the class labels are changing more rapidly, while making sure that no class regions are missed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-016-1584-1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3123-3478</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2017-04, Vol.55 (4), p.1425-1438
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2262565185
source SpringerLink Journals - AutoHoldings
subjects Adaptive sampling
Algorithms
Classification
Computational Mathematics and Numerical Analysis
Data points
Engineering
Engineering Design
Iterative methods
Monte Carlo simulation
Research Paper
Sequential sampling
Theoretical and Applied Mechanics
title A sequential sampling strategy for adaptive classification of computationally expensive data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A07%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sequential%20sampling%20strategy%20for%20adaptive%20classification%20of%20computationally%20expensive%20data&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Singh,%20Prashant&rft.date=2017-04-01&rft.volume=55&rft.issue=4&rft.spage=1425&rft.epage=1438&rft.pages=1425-1438&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-016-1584-1&rft_dat=%3Cproquest_cross%3E1881810333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262565185&rft_id=info:pmid/&rfr_iscdi=true