Quantum seeded evolutionary computational technique for constrained optimization in engineering design and manufacturing

In this paper an attempt is made to develop a new Quantum Seeded Hybrid Evolutionary Computational Technique (QSHECT) that is general, flexible and efficient in solving single objective constrained optimization problems. It generates initial parents using quantum seeds. It is here that QSHECT incorp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2017-03, Vol.55 (3), p.751-766
Hauptverfasser: Raj, K. Hans, Setia, Rajat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 766
container_issue 3
container_start_page 751
container_title Structural and multidisciplinary optimization
container_volume 55
creator Raj, K. Hans
Setia, Rajat
description In this paper an attempt is made to develop a new Quantum Seeded Hybrid Evolutionary Computational Technique (QSHECT) that is general, flexible and efficient in solving single objective constrained optimization problems. It generates initial parents using quantum seeds. It is here that QSHECT incorporates ideas from the principles of quantum computation and integrates them in the current framework of Real Coded Evolutionary Algorithm (RCEA). It also incorporates Simulated Annealing (SA) in the selection process of Evolutionary Algorithm (EA) for child generation. The proposed algorithm has been tested on standard test problems and engineering design problems taken from the literature. In order to test this algorithm on domain-specific manufacturing problems, Neuro-Fuzzy (NF) modeling of hot extrusion is attempted and the NF model is incorporated as a fitness evaluator inside the QSHECT to form a new variant of this technique, i.e. Quantum Seeded Neuro Fuzzy Hybrid Evolutionary Computational Technique (QSNFHECT) and is effectively applied for process optimization of hot extrusion process. The neuro-fuzzy model (NF) is also compared with statistical regression analysis (RA) model for evaluating the extrusion load. The NF model was found to be much superior. The optimal process parameters obtained by Quantum Seeded Neuro Fuzzy Hybrid Evolutionary Technique (QSNFHECT) are validated by the finite element model. The proposed methodology using QSNFHECT is a step towards meeting the challenges posed in intelligent manufacturing systems and opens new avenues for parameter estimation and optimization and can be easily incorporated in existing manufacturing setup.
doi_str_mv 10.1007/s00158-016-1529-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262564847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262564847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-8191685a088a9b3ad861e606fa2aeeb945248a90a98e8e60b0911ee6d8b79bba3</originalsourceid><addsrcrecordid>eNp9UU1LxDAQLaLguvoDvAU8V5Numk6OsvgFCyIoeAtpO12zbNOapKL-etOtiBc9zcd7b5iZlySnjJ4zSosLTynLIaVMpCzPZAp7yYwJlqeMA-z_5MXzYXLk_YZSCpTLWfL-MGgbhpZ4xBprgm_ddgims9p9kKpr-yHoXbklAasXa14HJE3nImZ9cNrYKOr6YFrzuSMSYwnadeyjM3ZNavRmbYm2NWm1HRpdhWEEjpODRm89nnzHefJ0ffW4vE1X9zd3y8tVWi04DykwyQTkmgJoWS50DYKhoKLRmUYsJc8zHhGqJSBEoKSSMURRQ1nIstSLeXI2ze1dF3f3QW26wcV7vMoykeWCAy_-YzEAWuRc5iKy2MSqXOe9w0b1zrTxU4pRNdqgJhtUtEGNNiiImmzS-H48G92vyX-KvgAySo1S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262564847</pqid></control><display><type>article</type><title>Quantum seeded evolutionary computational technique for constrained optimization in engineering design and manufacturing</title><source>Springer Nature - Complete Springer Journals</source><creator>Raj, K. Hans ; Setia, Rajat</creator><creatorcontrib>Raj, K. Hans ; Setia, Rajat</creatorcontrib><description>In this paper an attempt is made to develop a new Quantum Seeded Hybrid Evolutionary Computational Technique (QSHECT) that is general, flexible and efficient in solving single objective constrained optimization problems. It generates initial parents using quantum seeds. It is here that QSHECT incorporates ideas from the principles of quantum computation and integrates them in the current framework of Real Coded Evolutionary Algorithm (RCEA). It also incorporates Simulated Annealing (SA) in the selection process of Evolutionary Algorithm (EA) for child generation. The proposed algorithm has been tested on standard test problems and engineering design problems taken from the literature. In order to test this algorithm on domain-specific manufacturing problems, Neuro-Fuzzy (NF) modeling of hot extrusion is attempted and the NF model is incorporated as a fitness evaluator inside the QSHECT to form a new variant of this technique, i.e. Quantum Seeded Neuro Fuzzy Hybrid Evolutionary Computational Technique (QSNFHECT) and is effectively applied for process optimization of hot extrusion process. The neuro-fuzzy model (NF) is also compared with statistical regression analysis (RA) model for evaluating the extrusion load. The NF model was found to be much superior. The optimal process parameters obtained by Quantum Seeded Neuro Fuzzy Hybrid Evolutionary Technique (QSNFHECT) are validated by the finite element model. The proposed methodology using QSNFHECT is a step towards meeting the challenges posed in intelligent manufacturing systems and opens new avenues for parameter estimation and optimization and can be easily incorporated in existing manufacturing setup.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-016-1529-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial neural networks ; Computational Mathematics and Numerical Analysis ; Computer simulation ; Design engineering ; Design optimization ; Engineering ; Engineering Design ; Evolutionary algorithms ; Finite element method ; Fitness ; Fuzzy logic ; Genetic algorithms ; Hot extrusion ; Intelligent manufacturing systems ; Manufacturing ; Parameter estimation ; Process parameters ; Quantum computing ; Regression analysis ; Regression models ; Research Paper ; Simulated annealing ; Statistical analysis ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2017-03, Vol.55 (3), p.751-766</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-8191685a088a9b3ad861e606fa2aeeb945248a90a98e8e60b0911ee6d8b79bba3</citedby><cites>FETCH-LOGICAL-c344t-8191685a088a9b3ad861e606fa2aeeb945248a90a98e8e60b0911ee6d8b79bba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-016-1529-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-016-1529-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Raj, K. Hans</creatorcontrib><creatorcontrib>Setia, Rajat</creatorcontrib><title>Quantum seeded evolutionary computational technique for constrained optimization in engineering design and manufacturing</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>In this paper an attempt is made to develop a new Quantum Seeded Hybrid Evolutionary Computational Technique (QSHECT) that is general, flexible and efficient in solving single objective constrained optimization problems. It generates initial parents using quantum seeds. It is here that QSHECT incorporates ideas from the principles of quantum computation and integrates them in the current framework of Real Coded Evolutionary Algorithm (RCEA). It also incorporates Simulated Annealing (SA) in the selection process of Evolutionary Algorithm (EA) for child generation. The proposed algorithm has been tested on standard test problems and engineering design problems taken from the literature. In order to test this algorithm on domain-specific manufacturing problems, Neuro-Fuzzy (NF) modeling of hot extrusion is attempted and the NF model is incorporated as a fitness evaluator inside the QSHECT to form a new variant of this technique, i.e. Quantum Seeded Neuro Fuzzy Hybrid Evolutionary Computational Technique (QSNFHECT) and is effectively applied for process optimization of hot extrusion process. The neuro-fuzzy model (NF) is also compared with statistical regression analysis (RA) model for evaluating the extrusion load. The NF model was found to be much superior. The optimal process parameters obtained by Quantum Seeded Neuro Fuzzy Hybrid Evolutionary Technique (QSNFHECT) are validated by the finite element model. The proposed methodology using QSNFHECT is a step towards meeting the challenges posed in intelligent manufacturing systems and opens new avenues for parameter estimation and optimization and can be easily incorporated in existing manufacturing setup.</description><subject>Artificial neural networks</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer simulation</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Evolutionary algorithms</subject><subject>Finite element method</subject><subject>Fitness</subject><subject>Fuzzy logic</subject><subject>Genetic algorithms</subject><subject>Hot extrusion</subject><subject>Intelligent manufacturing systems</subject><subject>Manufacturing</subject><subject>Parameter estimation</subject><subject>Process parameters</subject><subject>Quantum computing</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research Paper</subject><subject>Simulated annealing</subject><subject>Statistical analysis</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UU1LxDAQLaLguvoDvAU8V5Numk6OsvgFCyIoeAtpO12zbNOapKL-etOtiBc9zcd7b5iZlySnjJ4zSosLTynLIaVMpCzPZAp7yYwJlqeMA-z_5MXzYXLk_YZSCpTLWfL-MGgbhpZ4xBprgm_ddgims9p9kKpr-yHoXbklAasXa14HJE3nImZ9cNrYKOr6YFrzuSMSYwnadeyjM3ZNavRmbYm2NWm1HRpdhWEEjpODRm89nnzHefJ0ffW4vE1X9zd3y8tVWi04DykwyQTkmgJoWS50DYKhoKLRmUYsJc8zHhGqJSBEoKSSMURRQ1nIstSLeXI2ze1dF3f3QW26wcV7vMoykeWCAy_-YzEAWuRc5iKy2MSqXOe9w0b1zrTxU4pRNdqgJhtUtEGNNiiImmzS-H48G92vyX-KvgAySo1S</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Raj, K. Hans</creator><creator>Setia, Rajat</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170301</creationdate><title>Quantum seeded evolutionary computational technique for constrained optimization in engineering design and manufacturing</title><author>Raj, K. Hans ; Setia, Rajat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-8191685a088a9b3ad861e606fa2aeeb945248a90a98e8e60b0911ee6d8b79bba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer simulation</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Evolutionary algorithms</topic><topic>Finite element method</topic><topic>Fitness</topic><topic>Fuzzy logic</topic><topic>Genetic algorithms</topic><topic>Hot extrusion</topic><topic>Intelligent manufacturing systems</topic><topic>Manufacturing</topic><topic>Parameter estimation</topic><topic>Process parameters</topic><topic>Quantum computing</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research Paper</topic><topic>Simulated annealing</topic><topic>Statistical analysis</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raj, K. Hans</creatorcontrib><creatorcontrib>Setia, Rajat</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raj, K. Hans</au><au>Setia, Rajat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum seeded evolutionary computational technique for constrained optimization in engineering design and manufacturing</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>55</volume><issue>3</issue><spage>751</spage><epage>766</epage><pages>751-766</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>In this paper an attempt is made to develop a new Quantum Seeded Hybrid Evolutionary Computational Technique (QSHECT) that is general, flexible and efficient in solving single objective constrained optimization problems. It generates initial parents using quantum seeds. It is here that QSHECT incorporates ideas from the principles of quantum computation and integrates them in the current framework of Real Coded Evolutionary Algorithm (RCEA). It also incorporates Simulated Annealing (SA) in the selection process of Evolutionary Algorithm (EA) for child generation. The proposed algorithm has been tested on standard test problems and engineering design problems taken from the literature. In order to test this algorithm on domain-specific manufacturing problems, Neuro-Fuzzy (NF) modeling of hot extrusion is attempted and the NF model is incorporated as a fitness evaluator inside the QSHECT to form a new variant of this technique, i.e. Quantum Seeded Neuro Fuzzy Hybrid Evolutionary Computational Technique (QSNFHECT) and is effectively applied for process optimization of hot extrusion process. The neuro-fuzzy model (NF) is also compared with statistical regression analysis (RA) model for evaluating the extrusion load. The NF model was found to be much superior. The optimal process parameters obtained by Quantum Seeded Neuro Fuzzy Hybrid Evolutionary Technique (QSNFHECT) are validated by the finite element model. The proposed methodology using QSNFHECT is a step towards meeting the challenges posed in intelligent manufacturing systems and opens new avenues for parameter estimation and optimization and can be easily incorporated in existing manufacturing setup.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-016-1529-8</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2017-03, Vol.55 (3), p.751-766
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2262564847
source Springer Nature - Complete Springer Journals
subjects Artificial neural networks
Computational Mathematics and Numerical Analysis
Computer simulation
Design engineering
Design optimization
Engineering
Engineering Design
Evolutionary algorithms
Finite element method
Fitness
Fuzzy logic
Genetic algorithms
Hot extrusion
Intelligent manufacturing systems
Manufacturing
Parameter estimation
Process parameters
Quantum computing
Regression analysis
Regression models
Research Paper
Simulated annealing
Statistical analysis
Theoretical and Applied Mechanics
title Quantum seeded evolutionary computational technique for constrained optimization in engineering design and manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20seeded%20evolutionary%20computational%20technique%20for%20constrained%20optimization%20in%20engineering%20design%20and%20manufacturing&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Raj,%20K.%20Hans&rft.date=2017-03-01&rft.volume=55&rft.issue=3&rft.spage=751&rft.epage=766&rft.pages=751-766&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-016-1529-8&rft_dat=%3Cproquest_cross%3E2262564847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262564847&rft_id=info:pmid/&rfr_iscdi=true