Quantum seeded evolutionary computational technique for constrained optimization in engineering design and manufacturing
In this paper an attempt is made to develop a new Quantum Seeded Hybrid Evolutionary Computational Technique (QSHECT) that is general, flexible and efficient in solving single objective constrained optimization problems. It generates initial parents using quantum seeds. It is here that QSHECT incorp...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2017-03, Vol.55 (3), p.751-766 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 766 |
---|---|
container_issue | 3 |
container_start_page | 751 |
container_title | Structural and multidisciplinary optimization |
container_volume | 55 |
creator | Raj, K. Hans Setia, Rajat |
description | In this paper an attempt is made to develop a new Quantum Seeded Hybrid Evolutionary Computational Technique (QSHECT) that is general, flexible and efficient in solving single objective constrained optimization problems. It generates initial parents using quantum seeds. It is here that QSHECT incorporates ideas from the principles of quantum computation and integrates them in the current framework of Real Coded Evolutionary Algorithm (RCEA). It also incorporates Simulated Annealing (SA) in the selection process of Evolutionary Algorithm (EA) for child generation. The proposed algorithm has been tested on standard test problems and engineering design problems taken from the literature. In order to test this algorithm on domain-specific manufacturing problems, Neuro-Fuzzy (NF) modeling of hot extrusion is attempted and the NF model is incorporated as a fitness evaluator inside the QSHECT to form a new variant of this technique, i.e. Quantum Seeded Neuro Fuzzy Hybrid Evolutionary Computational Technique (QSNFHECT) and is effectively applied for process optimization of hot extrusion process. The neuro-fuzzy model (NF) is also compared with statistical regression analysis (RA) model for evaluating the extrusion load. The NF model was found to be much superior. The optimal process parameters obtained by Quantum Seeded Neuro Fuzzy Hybrid Evolutionary Technique (QSNFHECT) are validated by the finite element model. The proposed methodology using QSNFHECT is a step towards meeting the challenges posed in intelligent manufacturing systems and opens new avenues for parameter estimation and optimization and can be easily incorporated in existing manufacturing setup. |
doi_str_mv | 10.1007/s00158-016-1529-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262564847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262564847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-8191685a088a9b3ad861e606fa2aeeb945248a90a98e8e60b0911ee6d8b79bba3</originalsourceid><addsrcrecordid>eNp9UU1LxDAQLaLguvoDvAU8V5Numk6OsvgFCyIoeAtpO12zbNOapKL-etOtiBc9zcd7b5iZlySnjJ4zSosLTynLIaVMpCzPZAp7yYwJlqeMA-z_5MXzYXLk_YZSCpTLWfL-MGgbhpZ4xBprgm_ddgims9p9kKpr-yHoXbklAasXa14HJE3nImZ9cNrYKOr6YFrzuSMSYwnadeyjM3ZNavRmbYm2NWm1HRpdhWEEjpODRm89nnzHefJ0ffW4vE1X9zd3y8tVWi04DykwyQTkmgJoWS50DYKhoKLRmUYsJc8zHhGqJSBEoKSSMURRQ1nIstSLeXI2ze1dF3f3QW26wcV7vMoykeWCAy_-YzEAWuRc5iKy2MSqXOe9w0b1zrTxU4pRNdqgJhtUtEGNNiiImmzS-H48G92vyX-KvgAySo1S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262564847</pqid></control><display><type>article</type><title>Quantum seeded evolutionary computational technique for constrained optimization in engineering design and manufacturing</title><source>Springer Nature - Complete Springer Journals</source><creator>Raj, K. Hans ; Setia, Rajat</creator><creatorcontrib>Raj, K. Hans ; Setia, Rajat</creatorcontrib><description>In this paper an attempt is made to develop a new Quantum Seeded Hybrid Evolutionary Computational Technique (QSHECT) that is general, flexible and efficient in solving single objective constrained optimization problems. It generates initial parents using quantum seeds. It is here that QSHECT incorporates ideas from the principles of quantum computation and integrates them in the current framework of Real Coded Evolutionary Algorithm (RCEA). It also incorporates Simulated Annealing (SA) in the selection process of Evolutionary Algorithm (EA) for child generation. The proposed algorithm has been tested on standard test problems and engineering design problems taken from the literature. In order to test this algorithm on domain-specific manufacturing problems, Neuro-Fuzzy (NF) modeling of hot extrusion is attempted and the NF model is incorporated as a fitness evaluator inside the QSHECT to form a new variant of this technique, i.e. Quantum Seeded Neuro Fuzzy Hybrid Evolutionary Computational Technique (QSNFHECT) and is effectively applied for process optimization of hot extrusion process. The neuro-fuzzy model (NF) is also compared with statistical regression analysis (RA) model for evaluating the extrusion load. The NF model was found to be much superior. The optimal process parameters obtained by Quantum Seeded Neuro Fuzzy Hybrid Evolutionary Technique (QSNFHECT) are validated by the finite element model. The proposed methodology using QSNFHECT is a step towards meeting the challenges posed in intelligent manufacturing systems and opens new avenues for parameter estimation and optimization and can be easily incorporated in existing manufacturing setup.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-016-1529-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial neural networks ; Computational Mathematics and Numerical Analysis ; Computer simulation ; Design engineering ; Design optimization ; Engineering ; Engineering Design ; Evolutionary algorithms ; Finite element method ; Fitness ; Fuzzy logic ; Genetic algorithms ; Hot extrusion ; Intelligent manufacturing systems ; Manufacturing ; Parameter estimation ; Process parameters ; Quantum computing ; Regression analysis ; Regression models ; Research Paper ; Simulated annealing ; Statistical analysis ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2017-03, Vol.55 (3), p.751-766</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-8191685a088a9b3ad861e606fa2aeeb945248a90a98e8e60b0911ee6d8b79bba3</citedby><cites>FETCH-LOGICAL-c344t-8191685a088a9b3ad861e606fa2aeeb945248a90a98e8e60b0911ee6d8b79bba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-016-1529-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-016-1529-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Raj, K. Hans</creatorcontrib><creatorcontrib>Setia, Rajat</creatorcontrib><title>Quantum seeded evolutionary computational technique for constrained optimization in engineering design and manufacturing</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>In this paper an attempt is made to develop a new Quantum Seeded Hybrid Evolutionary Computational Technique (QSHECT) that is general, flexible and efficient in solving single objective constrained optimization problems. It generates initial parents using quantum seeds. It is here that QSHECT incorporates ideas from the principles of quantum computation and integrates them in the current framework of Real Coded Evolutionary Algorithm (RCEA). It also incorporates Simulated Annealing (SA) in the selection process of Evolutionary Algorithm (EA) for child generation. The proposed algorithm has been tested on standard test problems and engineering design problems taken from the literature. In order to test this algorithm on domain-specific manufacturing problems, Neuro-Fuzzy (NF) modeling of hot extrusion is attempted and the NF model is incorporated as a fitness evaluator inside the QSHECT to form a new variant of this technique, i.e. Quantum Seeded Neuro Fuzzy Hybrid Evolutionary Computational Technique (QSNFHECT) and is effectively applied for process optimization of hot extrusion process. The neuro-fuzzy model (NF) is also compared with statistical regression analysis (RA) model for evaluating the extrusion load. The NF model was found to be much superior. The optimal process parameters obtained by Quantum Seeded Neuro Fuzzy Hybrid Evolutionary Technique (QSNFHECT) are validated by the finite element model. The proposed methodology using QSNFHECT is a step towards meeting the challenges posed in intelligent manufacturing systems and opens new avenues for parameter estimation and optimization and can be easily incorporated in existing manufacturing setup.</description><subject>Artificial neural networks</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer simulation</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Evolutionary algorithms</subject><subject>Finite element method</subject><subject>Fitness</subject><subject>Fuzzy logic</subject><subject>Genetic algorithms</subject><subject>Hot extrusion</subject><subject>Intelligent manufacturing systems</subject><subject>Manufacturing</subject><subject>Parameter estimation</subject><subject>Process parameters</subject><subject>Quantum computing</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research Paper</subject><subject>Simulated annealing</subject><subject>Statistical analysis</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UU1LxDAQLaLguvoDvAU8V5Numk6OsvgFCyIoeAtpO12zbNOapKL-etOtiBc9zcd7b5iZlySnjJ4zSosLTynLIaVMpCzPZAp7yYwJlqeMA-z_5MXzYXLk_YZSCpTLWfL-MGgbhpZ4xBprgm_ddgims9p9kKpr-yHoXbklAasXa14HJE3nImZ9cNrYKOr6YFrzuSMSYwnadeyjM3ZNavRmbYm2NWm1HRpdhWEEjpODRm89nnzHefJ0ffW4vE1X9zd3y8tVWi04DykwyQTkmgJoWS50DYKhoKLRmUYsJc8zHhGqJSBEoKSSMURRQ1nIstSLeXI2ze1dF3f3QW26wcV7vMoykeWCAy_-YzEAWuRc5iKy2MSqXOe9w0b1zrTxU4pRNdqgJhtUtEGNNiiImmzS-H48G92vyX-KvgAySo1S</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Raj, K. Hans</creator><creator>Setia, Rajat</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170301</creationdate><title>Quantum seeded evolutionary computational technique for constrained optimization in engineering design and manufacturing</title><author>Raj, K. Hans ; Setia, Rajat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-8191685a088a9b3ad861e606fa2aeeb945248a90a98e8e60b0911ee6d8b79bba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer simulation</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Evolutionary algorithms</topic><topic>Finite element method</topic><topic>Fitness</topic><topic>Fuzzy logic</topic><topic>Genetic algorithms</topic><topic>Hot extrusion</topic><topic>Intelligent manufacturing systems</topic><topic>Manufacturing</topic><topic>Parameter estimation</topic><topic>Process parameters</topic><topic>Quantum computing</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research Paper</topic><topic>Simulated annealing</topic><topic>Statistical analysis</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raj, K. Hans</creatorcontrib><creatorcontrib>Setia, Rajat</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raj, K. Hans</au><au>Setia, Rajat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum seeded evolutionary computational technique for constrained optimization in engineering design and manufacturing</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>55</volume><issue>3</issue><spage>751</spage><epage>766</epage><pages>751-766</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>In this paper an attempt is made to develop a new Quantum Seeded Hybrid Evolutionary Computational Technique (QSHECT) that is general, flexible and efficient in solving single objective constrained optimization problems. It generates initial parents using quantum seeds. It is here that QSHECT incorporates ideas from the principles of quantum computation and integrates them in the current framework of Real Coded Evolutionary Algorithm (RCEA). It also incorporates Simulated Annealing (SA) in the selection process of Evolutionary Algorithm (EA) for child generation. The proposed algorithm has been tested on standard test problems and engineering design problems taken from the literature. In order to test this algorithm on domain-specific manufacturing problems, Neuro-Fuzzy (NF) modeling of hot extrusion is attempted and the NF model is incorporated as a fitness evaluator inside the QSHECT to form a new variant of this technique, i.e. Quantum Seeded Neuro Fuzzy Hybrid Evolutionary Computational Technique (QSNFHECT) and is effectively applied for process optimization of hot extrusion process. The neuro-fuzzy model (NF) is also compared with statistical regression analysis (RA) model for evaluating the extrusion load. The NF model was found to be much superior. The optimal process parameters obtained by Quantum Seeded Neuro Fuzzy Hybrid Evolutionary Technique (QSNFHECT) are validated by the finite element model. The proposed methodology using QSNFHECT is a step towards meeting the challenges posed in intelligent manufacturing systems and opens new avenues for parameter estimation and optimization and can be easily incorporated in existing manufacturing setup.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-016-1529-8</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2017-03, Vol.55 (3), p.751-766 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2262564847 |
source | Springer Nature - Complete Springer Journals |
subjects | Artificial neural networks Computational Mathematics and Numerical Analysis Computer simulation Design engineering Design optimization Engineering Engineering Design Evolutionary algorithms Finite element method Fitness Fuzzy logic Genetic algorithms Hot extrusion Intelligent manufacturing systems Manufacturing Parameter estimation Process parameters Quantum computing Regression analysis Regression models Research Paper Simulated annealing Statistical analysis Theoretical and Applied Mechanics |
title | Quantum seeded evolutionary computational technique for constrained optimization in engineering design and manufacturing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20seeded%20evolutionary%20computational%20technique%20for%20constrained%20optimization%20in%20engineering%20design%20and%20manufacturing&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Raj,%20K.%20Hans&rft.date=2017-03-01&rft.volume=55&rft.issue=3&rft.spage=751&rft.epage=766&rft.pages=751-766&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-016-1529-8&rft_dat=%3Cproquest_cross%3E2262564847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262564847&rft_id=info:pmid/&rfr_iscdi=true |