From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Bergamo, Italy)

Recent exploration of the Gorno Zn-Pb-Ag deposit in northern Italy identified 3.3 Mt of sulfides at 4.9% Zn, 1.3% Pb, and 27.2 g/t Ag (indicated+inferred resources), and a further mineralized nucleus of mixed sulfides-nonsulfides in the Val Vedra area, currently under evaluation. The ores are hosted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mineralium deposita 2020-06, Vol.55 (5), p.953-970
Hauptverfasser: Mondillo, Nicola, Lupone, Federica, Boni, Maria, Joachimski, Michael, Balassone, Giuseppina, De Angelis, Marcello, Zanin, Simone, Granitzio, Fabio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 970
container_issue 5
container_start_page 953
container_title Mineralium deposita
container_volume 55
creator Mondillo, Nicola
Lupone, Federica
Boni, Maria
Joachimski, Michael
Balassone, Giuseppina
De Angelis, Marcello
Zanin, Simone
Granitzio, Fabio
description Recent exploration of the Gorno Zn-Pb-Ag deposit in northern Italy identified 3.3 Mt of sulfides at 4.9% Zn, 1.3% Pb, and 27.2 g/t Ag (indicated+inferred resources), and a further mineralized nucleus of mixed sulfides-nonsulfides in the Val Vedra area, currently under evaluation. The ores are hosted in Triassic limestone and shale. Sulfides (sphalerite, Ag-bearing galena, minor pyrite, and chalcopyrite) paragenetically follow Mn-Fe-bearing saddle dolomite and sparry calcite. The mineral association, and the carbon and oxygen isotope ratios of the sparry calcite (avg. δ 13 C = 1.0 ± 0.6‰ V-PDB; avg. δ 18 O = 19.63 ± 1.25‰ V-SMOW), are in agreement with precipitation from hydrothermal fluids in a deep burial setting. Sulfide emplacement occurred before the Alpine orogeny, likely during the Early-Middle Jurassic, in analogy to other Alpine-type deposits. The nonsulfide ore formed at the expense of sulfides, and mainly consists of smithsonite, hydrozincite, hemimorphite, and cerussite. The C-O-isotope values of the early generations of Zn-carbonates are characterized by δ 18 O between 24.1 and 26.8‰ V-SMOW and δ 13 C ratios between − 3.1 and 1.7‰ V-PDB. The later generations have lower δ 18 O (21.9 to 23.9‰) and lower δ 13 C (− 6.2 to − 3.9‰). These compositions, as those measured on cerussite (δ 13 C = −6.3 and − 7.7‰; δ 18 O = 14.0 and 15.3‰), agree with the formation of the nonsulfides in a supergene environment, under climatic conditions warmer than today. The δ 18 O decrease from early to late generations suggests progressive involvement of meteoric water sourced from higher altitudes. These characteristics indicate that the nonsulfides formed during the exhumation of the Gorno area from Miocene to Pliocene.
doi_str_mv 10.1007/s00126-019-00912-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262545557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262545557</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-acc20d34584c07156d5f8bb3493904170df259029e0d0f59934bd9e044532c93</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAi4LRyb_dzbEWWwsFEXryEra72bplm6xJeui3N3VFb56Gx_zem-EhdE3hgQLkjwGAsowAVQRAUUbkCRpRwRmhRZadohFAWgupinN0EcIWjpSAEXqbebfDk65vrSHx0Bsc9l3T1ibg6LB19le2FscPg-fOW4ffLe6925oq4tsn4zflzt3jRSy7w90lOmvKLpirnzlGq9nzavpClq_zxXSyJCUvskjKqmJQcyELUUFOZVbLplivuVBcgaA51A2TCpgyUEMjleJiXSchhOSsUnyMbobY9Mfn3oSot27vbbqoGcuYFFLKPFFsoCrvQvCm0b1vd6U_aAr62JwemtOpOf3dnJbJxAdTSLDdGP8X_Y_rCz02bsI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262545557</pqid></control><display><type>article</type><title>From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Bergamo, Italy)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mondillo, Nicola ; Lupone, Federica ; Boni, Maria ; Joachimski, Michael ; Balassone, Giuseppina ; De Angelis, Marcello ; Zanin, Simone ; Granitzio, Fabio</creator><creatorcontrib>Mondillo, Nicola ; Lupone, Federica ; Boni, Maria ; Joachimski, Michael ; Balassone, Giuseppina ; De Angelis, Marcello ; Zanin, Simone ; Granitzio, Fabio</creatorcontrib><description>Recent exploration of the Gorno Zn-Pb-Ag deposit in northern Italy identified 3.3 Mt of sulfides at 4.9% Zn, 1.3% Pb, and 27.2 g/t Ag (indicated+inferred resources), and a further mineralized nucleus of mixed sulfides-nonsulfides in the Val Vedra area, currently under evaluation. The ores are hosted in Triassic limestone and shale. Sulfides (sphalerite, Ag-bearing galena, minor pyrite, and chalcopyrite) paragenetically follow Mn-Fe-bearing saddle dolomite and sparry calcite. The mineral association, and the carbon and oxygen isotope ratios of the sparry calcite (avg. δ 13 C = 1.0 ± 0.6‰ V-PDB; avg. δ 18 O = 19.63 ± 1.25‰ V-SMOW), are in agreement with precipitation from hydrothermal fluids in a deep burial setting. Sulfide emplacement occurred before the Alpine orogeny, likely during the Early-Middle Jurassic, in analogy to other Alpine-type deposits. The nonsulfide ore formed at the expense of sulfides, and mainly consists of smithsonite, hydrozincite, hemimorphite, and cerussite. The C-O-isotope values of the early generations of Zn-carbonates are characterized by δ 18 O between 24.1 and 26.8‰ V-SMOW and δ 13 C ratios between − 3.1 and 1.7‰ V-PDB. The later generations have lower δ 18 O (21.9 to 23.9‰) and lower δ 13 C (− 6.2 to − 3.9‰). These compositions, as those measured on cerussite (δ 13 C = −6.3 and − 7.7‰; δ 18 O = 14.0 and 15.3‰), agree with the formation of the nonsulfides in a supergene environment, under climatic conditions warmer than today. The δ 18 O decrease from early to late generations suggests progressive involvement of meteoric water sourced from higher altitudes. These characteristics indicate that the nonsulfides formed during the exhumation of the Gorno area from Miocene to Pliocene.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-019-00912-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bearing ; Calcite ; Carbonates ; Chalcopyrite ; Climatic conditions ; Dolomite ; Dolostone ; Earth and Environmental Science ; Earth Sciences ; Exploration ; Fluids ; Galena ; Geology ; Hydrozincite ; Isotope ratios ; Isotopes ; Jurassic ; Lead ; Limestone ; Manganese ; Meteoric water ; Mineral Resources ; Mineralogy ; Minerals ; Miocene ; Ores ; Orogeny ; Oxygen isotope ratio ; Oxygen isotopes ; Pliocene ; Pyrite ; Sedimentary rocks ; Shale ; Silver ; Sphalerite ; Sulfides ; Sulphides ; Triassic ; Zinc ; Zinc ores ; Zinc silicates ; Zincblende</subject><ispartof>Mineralium deposita, 2020-06, Vol.55 (5), p.953-970</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-acc20d34584c07156d5f8bb3493904170df259029e0d0f59934bd9e044532c93</citedby><cites>FETCH-LOGICAL-a386t-acc20d34584c07156d5f8bb3493904170df259029e0d0f59934bd9e044532c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00126-019-00912-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00126-019-00912-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Mondillo, Nicola</creatorcontrib><creatorcontrib>Lupone, Federica</creatorcontrib><creatorcontrib>Boni, Maria</creatorcontrib><creatorcontrib>Joachimski, Michael</creatorcontrib><creatorcontrib>Balassone, Giuseppina</creatorcontrib><creatorcontrib>De Angelis, Marcello</creatorcontrib><creatorcontrib>Zanin, Simone</creatorcontrib><creatorcontrib>Granitzio, Fabio</creatorcontrib><title>From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Bergamo, Italy)</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>Recent exploration of the Gorno Zn-Pb-Ag deposit in northern Italy identified 3.3 Mt of sulfides at 4.9% Zn, 1.3% Pb, and 27.2 g/t Ag (indicated+inferred resources), and a further mineralized nucleus of mixed sulfides-nonsulfides in the Val Vedra area, currently under evaluation. The ores are hosted in Triassic limestone and shale. Sulfides (sphalerite, Ag-bearing galena, minor pyrite, and chalcopyrite) paragenetically follow Mn-Fe-bearing saddle dolomite and sparry calcite. The mineral association, and the carbon and oxygen isotope ratios of the sparry calcite (avg. δ 13 C = 1.0 ± 0.6‰ V-PDB; avg. δ 18 O = 19.63 ± 1.25‰ V-SMOW), are in agreement with precipitation from hydrothermal fluids in a deep burial setting. Sulfide emplacement occurred before the Alpine orogeny, likely during the Early-Middle Jurassic, in analogy to other Alpine-type deposits. The nonsulfide ore formed at the expense of sulfides, and mainly consists of smithsonite, hydrozincite, hemimorphite, and cerussite. The C-O-isotope values of the early generations of Zn-carbonates are characterized by δ 18 O between 24.1 and 26.8‰ V-SMOW and δ 13 C ratios between − 3.1 and 1.7‰ V-PDB. The later generations have lower δ 18 O (21.9 to 23.9‰) and lower δ 13 C (− 6.2 to − 3.9‰). These compositions, as those measured on cerussite (δ 13 C = −6.3 and − 7.7‰; δ 18 O = 14.0 and 15.3‰), agree with the formation of the nonsulfides in a supergene environment, under climatic conditions warmer than today. The δ 18 O decrease from early to late generations suggests progressive involvement of meteoric water sourced from higher altitudes. These characteristics indicate that the nonsulfides formed during the exhumation of the Gorno area from Miocene to Pliocene.</description><subject>Bearing</subject><subject>Calcite</subject><subject>Carbonates</subject><subject>Chalcopyrite</subject><subject>Climatic conditions</subject><subject>Dolomite</subject><subject>Dolostone</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Exploration</subject><subject>Fluids</subject><subject>Galena</subject><subject>Geology</subject><subject>Hydrozincite</subject><subject>Isotope ratios</subject><subject>Isotopes</subject><subject>Jurassic</subject><subject>Lead</subject><subject>Limestone</subject><subject>Manganese</subject><subject>Meteoric water</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Miocene</subject><subject>Ores</subject><subject>Orogeny</subject><subject>Oxygen isotope ratio</subject><subject>Oxygen isotopes</subject><subject>Pliocene</subject><subject>Pyrite</subject><subject>Sedimentary rocks</subject><subject>Shale</subject><subject>Silver</subject><subject>Sphalerite</subject><subject>Sulfides</subject><subject>Sulphides</subject><subject>Triassic</subject><subject>Zinc</subject><subject>Zinc ores</subject><subject>Zinc silicates</subject><subject>Zincblende</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAi4LRyb_dzbEWWwsFEXryEra72bplm6xJeui3N3VFb56Gx_zem-EhdE3hgQLkjwGAsowAVQRAUUbkCRpRwRmhRZadohFAWgupinN0EcIWjpSAEXqbebfDk65vrSHx0Bsc9l3T1ibg6LB19le2FscPg-fOW4ffLe6925oq4tsn4zflzt3jRSy7w90lOmvKLpirnzlGq9nzavpClq_zxXSyJCUvskjKqmJQcyELUUFOZVbLplivuVBcgaA51A2TCpgyUEMjleJiXSchhOSsUnyMbobY9Mfn3oSot27vbbqoGcuYFFLKPFFsoCrvQvCm0b1vd6U_aAr62JwemtOpOf3dnJbJxAdTSLDdGP8X_Y_rCz02bsI</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Mondillo, Nicola</creator><creator>Lupone, Federica</creator><creator>Boni, Maria</creator><creator>Joachimski, Michael</creator><creator>Balassone, Giuseppina</creator><creator>De Angelis, Marcello</creator><creator>Zanin, Simone</creator><creator>Granitzio, Fabio</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20200601</creationdate><title>From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Bergamo, Italy)</title><author>Mondillo, Nicola ; Lupone, Federica ; Boni, Maria ; Joachimski, Michael ; Balassone, Giuseppina ; De Angelis, Marcello ; Zanin, Simone ; Granitzio, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-acc20d34584c07156d5f8bb3493904170df259029e0d0f59934bd9e044532c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bearing</topic><topic>Calcite</topic><topic>Carbonates</topic><topic>Chalcopyrite</topic><topic>Climatic conditions</topic><topic>Dolomite</topic><topic>Dolostone</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Exploration</topic><topic>Fluids</topic><topic>Galena</topic><topic>Geology</topic><topic>Hydrozincite</topic><topic>Isotope ratios</topic><topic>Isotopes</topic><topic>Jurassic</topic><topic>Lead</topic><topic>Limestone</topic><topic>Manganese</topic><topic>Meteoric water</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Miocene</topic><topic>Ores</topic><topic>Orogeny</topic><topic>Oxygen isotope ratio</topic><topic>Oxygen isotopes</topic><topic>Pliocene</topic><topic>Pyrite</topic><topic>Sedimentary rocks</topic><topic>Shale</topic><topic>Silver</topic><topic>Sphalerite</topic><topic>Sulfides</topic><topic>Sulphides</topic><topic>Triassic</topic><topic>Zinc</topic><topic>Zinc ores</topic><topic>Zinc silicates</topic><topic>Zincblende</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mondillo, Nicola</creatorcontrib><creatorcontrib>Lupone, Federica</creatorcontrib><creatorcontrib>Boni, Maria</creatorcontrib><creatorcontrib>Joachimski, Michael</creatorcontrib><creatorcontrib>Balassone, Giuseppina</creatorcontrib><creatorcontrib>De Angelis, Marcello</creatorcontrib><creatorcontrib>Zanin, Simone</creatorcontrib><creatorcontrib>Granitzio, Fabio</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database (ProQuest)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mondillo, Nicola</au><au>Lupone, Federica</au><au>Boni, Maria</au><au>Joachimski, Michael</au><au>Balassone, Giuseppina</au><au>De Angelis, Marcello</au><au>Zanin, Simone</au><au>Granitzio, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Bergamo, Italy)</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>55</volume><issue>5</issue><spage>953</spage><epage>970</epage><pages>953-970</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>Recent exploration of the Gorno Zn-Pb-Ag deposit in northern Italy identified 3.3 Mt of sulfides at 4.9% Zn, 1.3% Pb, and 27.2 g/t Ag (indicated+inferred resources), and a further mineralized nucleus of mixed sulfides-nonsulfides in the Val Vedra area, currently under evaluation. The ores are hosted in Triassic limestone and shale. Sulfides (sphalerite, Ag-bearing galena, minor pyrite, and chalcopyrite) paragenetically follow Mn-Fe-bearing saddle dolomite and sparry calcite. The mineral association, and the carbon and oxygen isotope ratios of the sparry calcite (avg. δ 13 C = 1.0 ± 0.6‰ V-PDB; avg. δ 18 O = 19.63 ± 1.25‰ V-SMOW), are in agreement with precipitation from hydrothermal fluids in a deep burial setting. Sulfide emplacement occurred before the Alpine orogeny, likely during the Early-Middle Jurassic, in analogy to other Alpine-type deposits. The nonsulfide ore formed at the expense of sulfides, and mainly consists of smithsonite, hydrozincite, hemimorphite, and cerussite. The C-O-isotope values of the early generations of Zn-carbonates are characterized by δ 18 O between 24.1 and 26.8‰ V-SMOW and δ 13 C ratios between − 3.1 and 1.7‰ V-PDB. The later generations have lower δ 18 O (21.9 to 23.9‰) and lower δ 13 C (− 6.2 to − 3.9‰). These compositions, as those measured on cerussite (δ 13 C = −6.3 and − 7.7‰; δ 18 O = 14.0 and 15.3‰), agree with the formation of the nonsulfides in a supergene environment, under climatic conditions warmer than today. The δ 18 O decrease from early to late generations suggests progressive involvement of meteoric water sourced from higher altitudes. These characteristics indicate that the nonsulfides formed during the exhumation of the Gorno area from Miocene to Pliocene.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-019-00912-5</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-4598
ispartof Mineralium deposita, 2020-06, Vol.55 (5), p.953-970
issn 0026-4598
1432-1866
language eng
recordid cdi_proquest_journals_2262545557
source SpringerLink Journals - AutoHoldings
subjects Bearing
Calcite
Carbonates
Chalcopyrite
Climatic conditions
Dolomite
Dolostone
Earth and Environmental Science
Earth Sciences
Exploration
Fluids
Galena
Geology
Hydrozincite
Isotope ratios
Isotopes
Jurassic
Lead
Limestone
Manganese
Meteoric water
Mineral Resources
Mineralogy
Minerals
Miocene
Ores
Orogeny
Oxygen isotope ratio
Oxygen isotopes
Pliocene
Pyrite
Sedimentary rocks
Shale
Silver
Sphalerite
Sulfides
Sulphides
Triassic
Zinc
Zinc ores
Zinc silicates
Zincblende
title From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Bergamo, Italy)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Alpine-type%20sulfides%20to%20nonsulfides%20in%20the%20Gorno%20Zn%20project%20(Bergamo,%20Italy)&rft.jtitle=Mineralium%20deposita&rft.au=Mondillo,%20Nicola&rft.date=2020-06-01&rft.volume=55&rft.issue=5&rft.spage=953&rft.epage=970&rft.pages=953-970&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-019-00912-5&rft_dat=%3Cproquest_cross%3E2262545557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262545557&rft_id=info:pmid/&rfr_iscdi=true