From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Bergamo, Italy)
Recent exploration of the Gorno Zn-Pb-Ag deposit in northern Italy identified 3.3 Mt of sulfides at 4.9% Zn, 1.3% Pb, and 27.2 g/t Ag (indicated+inferred resources), and a further mineralized nucleus of mixed sulfides-nonsulfides in the Val Vedra area, currently under evaluation. The ores are hosted...
Gespeichert in:
Veröffentlicht in: | Mineralium deposita 2020-06, Vol.55 (5), p.953-970 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 970 |
---|---|
container_issue | 5 |
container_start_page | 953 |
container_title | Mineralium deposita |
container_volume | 55 |
creator | Mondillo, Nicola Lupone, Federica Boni, Maria Joachimski, Michael Balassone, Giuseppina De Angelis, Marcello Zanin, Simone Granitzio, Fabio |
description | Recent exploration of the Gorno Zn-Pb-Ag deposit in northern Italy identified 3.3 Mt of sulfides at 4.9% Zn, 1.3% Pb, and 27.2 g/t Ag (indicated+inferred resources), and a further mineralized nucleus of mixed sulfides-nonsulfides in the Val Vedra area, currently under evaluation. The ores are hosted in Triassic limestone and shale. Sulfides (sphalerite, Ag-bearing galena, minor pyrite, and chalcopyrite) paragenetically follow Mn-Fe-bearing saddle dolomite and sparry calcite. The mineral association, and the carbon and oxygen isotope ratios of the sparry calcite (avg. δ
13
C = 1.0 ± 0.6‰ V-PDB; avg. δ
18
O = 19.63 ± 1.25‰ V-SMOW), are in agreement with precipitation from hydrothermal fluids in a deep burial setting. Sulfide emplacement occurred before the Alpine orogeny, likely during the Early-Middle Jurassic, in analogy to other Alpine-type deposits. The nonsulfide ore formed at the expense of sulfides, and mainly consists of smithsonite, hydrozincite, hemimorphite, and cerussite. The C-O-isotope values of the early generations of Zn-carbonates are characterized by δ
18
O between 24.1 and 26.8‰ V-SMOW and δ
13
C ratios between − 3.1 and 1.7‰ V-PDB. The later generations have lower δ
18
O (21.9 to 23.9‰) and lower δ
13
C (− 6.2 to − 3.9‰). These compositions, as those measured on cerussite (δ
13
C = −6.3 and − 7.7‰; δ
18
O = 14.0 and 15.3‰), agree with the formation of the nonsulfides in a supergene environment, under climatic conditions warmer than today. The δ
18
O decrease from early to late generations suggests progressive involvement of meteoric water sourced from higher altitudes. These characteristics indicate that the nonsulfides formed during the exhumation of the Gorno area from Miocene to Pliocene. |
doi_str_mv | 10.1007/s00126-019-00912-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262545557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262545557</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-acc20d34584c07156d5f8bb3493904170df259029e0d0f59934bd9e044532c93</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAi4LRyb_dzbEWWwsFEXryEra72bplm6xJeui3N3VFb56Gx_zem-EhdE3hgQLkjwGAsowAVQRAUUbkCRpRwRmhRZadohFAWgupinN0EcIWjpSAEXqbebfDk65vrSHx0Bsc9l3T1ibg6LB19le2FscPg-fOW4ffLe6925oq4tsn4zflzt3jRSy7w90lOmvKLpirnzlGq9nzavpClq_zxXSyJCUvskjKqmJQcyELUUFOZVbLplivuVBcgaA51A2TCpgyUEMjleJiXSchhOSsUnyMbobY9Mfn3oSot27vbbqoGcuYFFLKPFFsoCrvQvCm0b1vd6U_aAr62JwemtOpOf3dnJbJxAdTSLDdGP8X_Y_rCz02bsI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262545557</pqid></control><display><type>article</type><title>From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Bergamo, Italy)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mondillo, Nicola ; Lupone, Federica ; Boni, Maria ; Joachimski, Michael ; Balassone, Giuseppina ; De Angelis, Marcello ; Zanin, Simone ; Granitzio, Fabio</creator><creatorcontrib>Mondillo, Nicola ; Lupone, Federica ; Boni, Maria ; Joachimski, Michael ; Balassone, Giuseppina ; De Angelis, Marcello ; Zanin, Simone ; Granitzio, Fabio</creatorcontrib><description>Recent exploration of the Gorno Zn-Pb-Ag deposit in northern Italy identified 3.3 Mt of sulfides at 4.9% Zn, 1.3% Pb, and 27.2 g/t Ag (indicated+inferred resources), and a further mineralized nucleus of mixed sulfides-nonsulfides in the Val Vedra area, currently under evaluation. The ores are hosted in Triassic limestone and shale. Sulfides (sphalerite, Ag-bearing galena, minor pyrite, and chalcopyrite) paragenetically follow Mn-Fe-bearing saddle dolomite and sparry calcite. The mineral association, and the carbon and oxygen isotope ratios of the sparry calcite (avg. δ
13
C = 1.0 ± 0.6‰ V-PDB; avg. δ
18
O = 19.63 ± 1.25‰ V-SMOW), are in agreement with precipitation from hydrothermal fluids in a deep burial setting. Sulfide emplacement occurred before the Alpine orogeny, likely during the Early-Middle Jurassic, in analogy to other Alpine-type deposits. The nonsulfide ore formed at the expense of sulfides, and mainly consists of smithsonite, hydrozincite, hemimorphite, and cerussite. The C-O-isotope values of the early generations of Zn-carbonates are characterized by δ
18
O between 24.1 and 26.8‰ V-SMOW and δ
13
C ratios between − 3.1 and 1.7‰ V-PDB. The later generations have lower δ
18
O (21.9 to 23.9‰) and lower δ
13
C (− 6.2 to − 3.9‰). These compositions, as those measured on cerussite (δ
13
C = −6.3 and − 7.7‰; δ
18
O = 14.0 and 15.3‰), agree with the formation of the nonsulfides in a supergene environment, under climatic conditions warmer than today. The δ
18
O decrease from early to late generations suggests progressive involvement of meteoric water sourced from higher altitudes. These characteristics indicate that the nonsulfides formed during the exhumation of the Gorno area from Miocene to Pliocene.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-019-00912-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bearing ; Calcite ; Carbonates ; Chalcopyrite ; Climatic conditions ; Dolomite ; Dolostone ; Earth and Environmental Science ; Earth Sciences ; Exploration ; Fluids ; Galena ; Geology ; Hydrozincite ; Isotope ratios ; Isotopes ; Jurassic ; Lead ; Limestone ; Manganese ; Meteoric water ; Mineral Resources ; Mineralogy ; Minerals ; Miocene ; Ores ; Orogeny ; Oxygen isotope ratio ; Oxygen isotopes ; Pliocene ; Pyrite ; Sedimentary rocks ; Shale ; Silver ; Sphalerite ; Sulfides ; Sulphides ; Triassic ; Zinc ; Zinc ores ; Zinc silicates ; Zincblende</subject><ispartof>Mineralium deposita, 2020-06, Vol.55 (5), p.953-970</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-acc20d34584c07156d5f8bb3493904170df259029e0d0f59934bd9e044532c93</citedby><cites>FETCH-LOGICAL-a386t-acc20d34584c07156d5f8bb3493904170df259029e0d0f59934bd9e044532c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00126-019-00912-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00126-019-00912-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Mondillo, Nicola</creatorcontrib><creatorcontrib>Lupone, Federica</creatorcontrib><creatorcontrib>Boni, Maria</creatorcontrib><creatorcontrib>Joachimski, Michael</creatorcontrib><creatorcontrib>Balassone, Giuseppina</creatorcontrib><creatorcontrib>De Angelis, Marcello</creatorcontrib><creatorcontrib>Zanin, Simone</creatorcontrib><creatorcontrib>Granitzio, Fabio</creatorcontrib><title>From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Bergamo, Italy)</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>Recent exploration of the Gorno Zn-Pb-Ag deposit in northern Italy identified 3.3 Mt of sulfides at 4.9% Zn, 1.3% Pb, and 27.2 g/t Ag (indicated+inferred resources), and a further mineralized nucleus of mixed sulfides-nonsulfides in the Val Vedra area, currently under evaluation. The ores are hosted in Triassic limestone and shale. Sulfides (sphalerite, Ag-bearing galena, minor pyrite, and chalcopyrite) paragenetically follow Mn-Fe-bearing saddle dolomite and sparry calcite. The mineral association, and the carbon and oxygen isotope ratios of the sparry calcite (avg. δ
13
C = 1.0 ± 0.6‰ V-PDB; avg. δ
18
O = 19.63 ± 1.25‰ V-SMOW), are in agreement with precipitation from hydrothermal fluids in a deep burial setting. Sulfide emplacement occurred before the Alpine orogeny, likely during the Early-Middle Jurassic, in analogy to other Alpine-type deposits. The nonsulfide ore formed at the expense of sulfides, and mainly consists of smithsonite, hydrozincite, hemimorphite, and cerussite. The C-O-isotope values of the early generations of Zn-carbonates are characterized by δ
18
O between 24.1 and 26.8‰ V-SMOW and δ
13
C ratios between − 3.1 and 1.7‰ V-PDB. The later generations have lower δ
18
O (21.9 to 23.9‰) and lower δ
13
C (− 6.2 to − 3.9‰). These compositions, as those measured on cerussite (δ
13
C = −6.3 and − 7.7‰; δ
18
O = 14.0 and 15.3‰), agree with the formation of the nonsulfides in a supergene environment, under climatic conditions warmer than today. The δ
18
O decrease from early to late generations suggests progressive involvement of meteoric water sourced from higher altitudes. These characteristics indicate that the nonsulfides formed during the exhumation of the Gorno area from Miocene to Pliocene.</description><subject>Bearing</subject><subject>Calcite</subject><subject>Carbonates</subject><subject>Chalcopyrite</subject><subject>Climatic conditions</subject><subject>Dolomite</subject><subject>Dolostone</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Exploration</subject><subject>Fluids</subject><subject>Galena</subject><subject>Geology</subject><subject>Hydrozincite</subject><subject>Isotope ratios</subject><subject>Isotopes</subject><subject>Jurassic</subject><subject>Lead</subject><subject>Limestone</subject><subject>Manganese</subject><subject>Meteoric water</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Miocene</subject><subject>Ores</subject><subject>Orogeny</subject><subject>Oxygen isotope ratio</subject><subject>Oxygen isotopes</subject><subject>Pliocene</subject><subject>Pyrite</subject><subject>Sedimentary rocks</subject><subject>Shale</subject><subject>Silver</subject><subject>Sphalerite</subject><subject>Sulfides</subject><subject>Sulphides</subject><subject>Triassic</subject><subject>Zinc</subject><subject>Zinc ores</subject><subject>Zinc silicates</subject><subject>Zincblende</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAi4LRyb_dzbEWWwsFEXryEra72bplm6xJeui3N3VFb56Gx_zem-EhdE3hgQLkjwGAsowAVQRAUUbkCRpRwRmhRZadohFAWgupinN0EcIWjpSAEXqbebfDk65vrSHx0Bsc9l3T1ibg6LB19le2FscPg-fOW4ffLe6925oq4tsn4zflzt3jRSy7w90lOmvKLpirnzlGq9nzavpClq_zxXSyJCUvskjKqmJQcyELUUFOZVbLplivuVBcgaA51A2TCpgyUEMjleJiXSchhOSsUnyMbobY9Mfn3oSot27vbbqoGcuYFFLKPFFsoCrvQvCm0b1vd6U_aAr62JwemtOpOf3dnJbJxAdTSLDdGP8X_Y_rCz02bsI</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Mondillo, Nicola</creator><creator>Lupone, Federica</creator><creator>Boni, Maria</creator><creator>Joachimski, Michael</creator><creator>Balassone, Giuseppina</creator><creator>De Angelis, Marcello</creator><creator>Zanin, Simone</creator><creator>Granitzio, Fabio</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20200601</creationdate><title>From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Bergamo, Italy)</title><author>Mondillo, Nicola ; Lupone, Federica ; Boni, Maria ; Joachimski, Michael ; Balassone, Giuseppina ; De Angelis, Marcello ; Zanin, Simone ; Granitzio, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-acc20d34584c07156d5f8bb3493904170df259029e0d0f59934bd9e044532c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bearing</topic><topic>Calcite</topic><topic>Carbonates</topic><topic>Chalcopyrite</topic><topic>Climatic conditions</topic><topic>Dolomite</topic><topic>Dolostone</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Exploration</topic><topic>Fluids</topic><topic>Galena</topic><topic>Geology</topic><topic>Hydrozincite</topic><topic>Isotope ratios</topic><topic>Isotopes</topic><topic>Jurassic</topic><topic>Lead</topic><topic>Limestone</topic><topic>Manganese</topic><topic>Meteoric water</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Miocene</topic><topic>Ores</topic><topic>Orogeny</topic><topic>Oxygen isotope ratio</topic><topic>Oxygen isotopes</topic><topic>Pliocene</topic><topic>Pyrite</topic><topic>Sedimentary rocks</topic><topic>Shale</topic><topic>Silver</topic><topic>Sphalerite</topic><topic>Sulfides</topic><topic>Sulphides</topic><topic>Triassic</topic><topic>Zinc</topic><topic>Zinc ores</topic><topic>Zinc silicates</topic><topic>Zincblende</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mondillo, Nicola</creatorcontrib><creatorcontrib>Lupone, Federica</creatorcontrib><creatorcontrib>Boni, Maria</creatorcontrib><creatorcontrib>Joachimski, Michael</creatorcontrib><creatorcontrib>Balassone, Giuseppina</creatorcontrib><creatorcontrib>De Angelis, Marcello</creatorcontrib><creatorcontrib>Zanin, Simone</creatorcontrib><creatorcontrib>Granitzio, Fabio</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database (ProQuest)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mondillo, Nicola</au><au>Lupone, Federica</au><au>Boni, Maria</au><au>Joachimski, Michael</au><au>Balassone, Giuseppina</au><au>De Angelis, Marcello</au><au>Zanin, Simone</au><au>Granitzio, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Bergamo, Italy)</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>55</volume><issue>5</issue><spage>953</spage><epage>970</epage><pages>953-970</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>Recent exploration of the Gorno Zn-Pb-Ag deposit in northern Italy identified 3.3 Mt of sulfides at 4.9% Zn, 1.3% Pb, and 27.2 g/t Ag (indicated+inferred resources), and a further mineralized nucleus of mixed sulfides-nonsulfides in the Val Vedra area, currently under evaluation. The ores are hosted in Triassic limestone and shale. Sulfides (sphalerite, Ag-bearing galena, minor pyrite, and chalcopyrite) paragenetically follow Mn-Fe-bearing saddle dolomite and sparry calcite. The mineral association, and the carbon and oxygen isotope ratios of the sparry calcite (avg. δ
13
C = 1.0 ± 0.6‰ V-PDB; avg. δ
18
O = 19.63 ± 1.25‰ V-SMOW), are in agreement with precipitation from hydrothermal fluids in a deep burial setting. Sulfide emplacement occurred before the Alpine orogeny, likely during the Early-Middle Jurassic, in analogy to other Alpine-type deposits. The nonsulfide ore formed at the expense of sulfides, and mainly consists of smithsonite, hydrozincite, hemimorphite, and cerussite. The C-O-isotope values of the early generations of Zn-carbonates are characterized by δ
18
O between 24.1 and 26.8‰ V-SMOW and δ
13
C ratios between − 3.1 and 1.7‰ V-PDB. The later generations have lower δ
18
O (21.9 to 23.9‰) and lower δ
13
C (− 6.2 to − 3.9‰). These compositions, as those measured on cerussite (δ
13
C = −6.3 and − 7.7‰; δ
18
O = 14.0 and 15.3‰), agree with the formation of the nonsulfides in a supergene environment, under climatic conditions warmer than today. The δ
18
O decrease from early to late generations suggests progressive involvement of meteoric water sourced from higher altitudes. These characteristics indicate that the nonsulfides formed during the exhumation of the Gorno area from Miocene to Pliocene.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-019-00912-5</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-4598 |
ispartof | Mineralium deposita, 2020-06, Vol.55 (5), p.953-970 |
issn | 0026-4598 1432-1866 |
language | eng |
recordid | cdi_proquest_journals_2262545557 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bearing Calcite Carbonates Chalcopyrite Climatic conditions Dolomite Dolostone Earth and Environmental Science Earth Sciences Exploration Fluids Galena Geology Hydrozincite Isotope ratios Isotopes Jurassic Lead Limestone Manganese Meteoric water Mineral Resources Mineralogy Minerals Miocene Ores Orogeny Oxygen isotope ratio Oxygen isotopes Pliocene Pyrite Sedimentary rocks Shale Silver Sphalerite Sulfides Sulphides Triassic Zinc Zinc ores Zinc silicates Zincblende |
title | From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Bergamo, Italy) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Alpine-type%20sulfides%20to%20nonsulfides%20in%20the%20Gorno%20Zn%20project%20(Bergamo,%20Italy)&rft.jtitle=Mineralium%20deposita&rft.au=Mondillo,%20Nicola&rft.date=2020-06-01&rft.volume=55&rft.issue=5&rft.spage=953&rft.epage=970&rft.pages=953-970&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-019-00912-5&rft_dat=%3Cproquest_cross%3E2262545557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262545557&rft_id=info:pmid/&rfr_iscdi=true |