Dynamic ant colony optimisation for TSP

Ants exhibit collective behaviour in performing tasks that cannot be carried out by an individual ant. When ants are working, they must communicate with each other through a kind of chemical substance—pheromones. Ants look for food and lay the way back to their nest with pheromones, and the other an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2003-11, Vol.22 (7-8), p.528-533
Hauptverfasser: Li, Yong, Gong, Shihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 533
container_issue 7-8
container_start_page 528
container_title International journal of advanced manufacturing technology
container_volume 22
creator Li, Yong
Gong, Shihua
description Ants exhibit collective behaviour in performing tasks that cannot be carried out by an individual ant. When ants are working, they must communicate with each other through a kind of chemical substance—pheromones. Ants look for food and lay the way back to their nest with pheromones, and the other ants can follow the pheromone to find the food efficiently. Using the analogy of foraging behaviour and pheromones, Marco Dorigo proposed the ant algorithm and applied it to solving the travelling salesman problem (TSP) and solving job-shop scheduling. In this paper, we simulate real ants with more aspects. Updating of pheromones is more likely to be the real situation in the natural world. Our algorithm shows a better performance than the original algorithm.
doi_str_mv 10.1007/s00170-002-1478-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262521851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262521851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-ac1c3a374f8271965364e1b4cc3fb24365cdf3d175bebfb6d6421551cf8dec313</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoOFYfwN2AC1fRfPny16XUXygoWNchk0lgSjupyXQxb-8MdXU3h3vgEHIL7AEY04-FMdCMMsYpCG3o8oxUIBApMpDnpGJcGYpamUtyVcp2ohUoU5H757F3-87Xrh9qn3apH-t0GLp9V9zQpb6OKdeb769rchHdroSb_12Qn9eXzeqdrj_fPlZPa-on0UCdB48OtYiGa1gqiUoEaIT3GBsuUEnfRmxByyY0sVGtEhykBB9NGzwCLsjd6feQ0-8xlMFu0zH3k9JyrrjkYORMwYnyOZWSQ7SH3O1dHi0wO_ewpx526mHnHnaJf-dpUVM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262521851</pqid></control><display><type>article</type><title>Dynamic ant colony optimisation for TSP</title><source>SpringerLink Journals</source><creator>Li, Yong ; Gong, Shihua</creator><creatorcontrib>Li, Yong ; Gong, Shihua</creatorcontrib><description>Ants exhibit collective behaviour in performing tasks that cannot be carried out by an individual ant. When ants are working, they must communicate with each other through a kind of chemical substance—pheromones. Ants look for food and lay the way back to their nest with pheromones, and the other ants can follow the pheromone to find the food efficiently. Using the analogy of foraging behaviour and pheromones, Marco Dorigo proposed the ant algorithm and applied it to solving the travelling salesman problem (TSP) and solving job-shop scheduling. In this paper, we simulate real ants with more aspects. Updating of pheromones is more likely to be the real situation in the natural world. Our algorithm shows a better performance than the original algorithm.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-002-1478-9</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Algorithms ; Ant colony optimization ; Computer simulation ; Food ; Job shop scheduling ; Organic chemistry ; Pheromones ; Traveling salesman problem</subject><ispartof>International journal of advanced manufacturing technology, 2003-11, Vol.22 (7-8), p.528-533</ispartof><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2003). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-ac1c3a374f8271965364e1b4cc3fb24365cdf3d175bebfb6d6421551cf8dec313</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Gong, Shihua</creatorcontrib><title>Dynamic ant colony optimisation for TSP</title><title>International journal of advanced manufacturing technology</title><description>Ants exhibit collective behaviour in performing tasks that cannot be carried out by an individual ant. When ants are working, they must communicate with each other through a kind of chemical substance—pheromones. Ants look for food and lay the way back to their nest with pheromones, and the other ants can follow the pheromone to find the food efficiently. Using the analogy of foraging behaviour and pheromones, Marco Dorigo proposed the ant algorithm and applied it to solving the travelling salesman problem (TSP) and solving job-shop scheduling. In this paper, we simulate real ants with more aspects. Updating of pheromones is more likely to be the real situation in the natural world. Our algorithm shows a better performance than the original algorithm.</description><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Computer simulation</subject><subject>Food</subject><subject>Job shop scheduling</subject><subject>Organic chemistry</subject><subject>Pheromones</subject><subject>Traveling salesman problem</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkM1KAzEYRYMoOFYfwN2AC1fRfPny16XUXygoWNchk0lgSjupyXQxb-8MdXU3h3vgEHIL7AEY04-FMdCMMsYpCG3o8oxUIBApMpDnpGJcGYpamUtyVcp2ohUoU5H757F3-87Xrh9qn3apH-t0GLp9V9zQpb6OKdeb769rchHdroSb_12Qn9eXzeqdrj_fPlZPa-on0UCdB48OtYiGa1gqiUoEaIT3GBsuUEnfRmxByyY0sVGtEhykBB9NGzwCLsjd6feQ0-8xlMFu0zH3k9JyrrjkYORMwYnyOZWSQ7SH3O1dHi0wO_ewpx526mHnHnaJf-dpUVM</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Li, Yong</creator><creator>Gong, Shihua</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20031101</creationdate><title>Dynamic ant colony optimisation for TSP</title><author>Li, Yong ; Gong, Shihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-ac1c3a374f8271965364e1b4cc3fb24365cdf3d175bebfb6d6421551cf8dec313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Computer simulation</topic><topic>Food</topic><topic>Job shop scheduling</topic><topic>Organic chemistry</topic><topic>Pheromones</topic><topic>Traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Gong, Shihua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yong</au><au>Gong, Shihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic ant colony optimisation for TSP</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><date>2003-11-01</date><risdate>2003</risdate><volume>22</volume><issue>7-8</issue><spage>528</spage><epage>533</epage><pages>528-533</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Ants exhibit collective behaviour in performing tasks that cannot be carried out by an individual ant. When ants are working, they must communicate with each other through a kind of chemical substance—pheromones. Ants look for food and lay the way back to their nest with pheromones, and the other ants can follow the pheromone to find the food efficiently. Using the analogy of foraging behaviour and pheromones, Marco Dorigo proposed the ant algorithm and applied it to solving the travelling salesman problem (TSP) and solving job-shop scheduling. In this paper, we simulate real ants with more aspects. Updating of pheromones is more likely to be the real situation in the natural world. Our algorithm shows a better performance than the original algorithm.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00170-002-1478-9</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2003-11, Vol.22 (7-8), p.528-533
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262521851
source SpringerLink Journals
subjects Algorithms
Ant colony optimization
Computer simulation
Food
Job shop scheduling
Organic chemistry
Pheromones
Traveling salesman problem
title Dynamic ant colony optimisation for TSP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20ant%20colony%20optimisation%20for%20TSP&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Li,%20Yong&rft.date=2003-11-01&rft.volume=22&rft.issue=7-8&rft.spage=528&rft.epage=533&rft.pages=528-533&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-002-1478-9&rft_dat=%3Cproquest_cross%3E2262521851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262521851&rft_id=info:pmid/&rfr_iscdi=true