Optimal tolerance allocation using a multiobjective particle swarm optimizer
Particle swarm optimizers are routinely utilized in engineering design problems, but much work remains to take advantage of their full potential in the combined areas of sensitivity analysis and tolerance synthesis. In this paper, a novel Pareto-based multiobjective formulation is proposed to enhanc...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2009-10, Vol.44 (7-8), p.710-724 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 724 |
---|---|
container_issue | 7-8 |
container_start_page | 710 |
container_title | International journal of advanced manufacturing technology |
container_volume | 44 |
creator | Forouraghi, Babak |
description | Particle swarm optimizers are routinely utilized in engineering design problems, but much work remains to take advantage of their full potential in the combined areas of sensitivity analysis and tolerance synthesis. In this paper, a novel Pareto-based multiobjective formulation is proposed to enhance the operations of a particle swarm optimizer and systematically distribute tolerances among various components of a mechanical assembly. The enhanced algorithm relies on nonlinear sensitivity analysis and the statistical root sum squares model to simultaneously optimize product performance criteria, the manufacturing cost, and the stack-up tolerance. It is shown that the proposed algorithm can accomplish its optimization task by successfully shifting nominal values of design parameters instead of the expensive tightening of component tolerances. Several numerical experiments for optimal design of a stepped bar assembly were conducted, which highlight the advantages of the proposed methodology. |
doi_str_mv | 10.1007/s00170-008-1892-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262507710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262507710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-31eb0b395881b2cc9d4625bd2f7707158a963a8e6035e738680ee0cceb8546c03</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FJsk3Soyx-QWEveg5pdnbp0m1rkir6602p4MnTMPC8zzAvIdccbjmAvosAXAMDMIybUjBzQhZ8JSWTwItTsgChDJNamXNyEeMh04orsyDVZkjN0bU09S0G13mkrm1771LTd3SMTbenjh7HNu_1AX1qPpAOLqTGt0jjpwtH2k-K5hvDJTnbuTbi1e9ckrfHh9f1M6s2Ty_r-4p5yVVikmMNtSwLY3gtvC-3KyWKeit2WoPmhXGlks6gAlmglkYZQATvsTbFSnmQS3Ize4fQv48Ykz30Y-jySStEVoHWfKL4TPnQxxhwZ4eQXw1floOdSrNzaTaXZqfSrMkZMWdiZrs9hj_z_6Eff_NvRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262507710</pqid></control><display><type>article</type><title>Optimal tolerance allocation using a multiobjective particle swarm optimizer</title><source>Springer Nature - Complete Springer Journals</source><creator>Forouraghi, Babak</creator><creatorcontrib>Forouraghi, Babak</creatorcontrib><description>Particle swarm optimizers are routinely utilized in engineering design problems, but much work remains to take advantage of their full potential in the combined areas of sensitivity analysis and tolerance synthesis. In this paper, a novel Pareto-based multiobjective formulation is proposed to enhance the operations of a particle swarm optimizer and systematically distribute tolerances among various components of a mechanical assembly. The enhanced algorithm relies on nonlinear sensitivity analysis and the statistical root sum squares model to simultaneously optimize product performance criteria, the manufacturing cost, and the stack-up tolerance. It is shown that the proposed algorithm can accomplish its optimization task by successfully shifting nominal values of design parameters instead of the expensive tightening of component tolerances. Several numerical experiments for optimal design of a stepped bar assembly were conducted, which highlight the advantages of the proposed methodology.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-008-1892-8</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>Algorithms ; Assembly ; CAE) and Design ; Computer-Aided Engineering (CAD ; Design engineering ; Design parameters ; Engineering ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Multiple objective analysis ; Nonlinear analysis ; Optimization ; Original Article ; Production costs ; Sensitivity analysis ; Tolerances</subject><ispartof>International journal of advanced manufacturing technology, 2009-10, Vol.44 (7-8), p.710-724</ispartof><rights>Springer-Verlag London Limited 2008</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2008). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-31eb0b395881b2cc9d4625bd2f7707158a963a8e6035e738680ee0cceb8546c03</citedby><cites>FETCH-LOGICAL-c316t-31eb0b395881b2cc9d4625bd2f7707158a963a8e6035e738680ee0cceb8546c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-008-1892-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-008-1892-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Forouraghi, Babak</creatorcontrib><title>Optimal tolerance allocation using a multiobjective particle swarm optimizer</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Particle swarm optimizers are routinely utilized in engineering design problems, but much work remains to take advantage of their full potential in the combined areas of sensitivity analysis and tolerance synthesis. In this paper, a novel Pareto-based multiobjective formulation is proposed to enhance the operations of a particle swarm optimizer and systematically distribute tolerances among various components of a mechanical assembly. The enhanced algorithm relies on nonlinear sensitivity analysis and the statistical root sum squares model to simultaneously optimize product performance criteria, the manufacturing cost, and the stack-up tolerance. It is shown that the proposed algorithm can accomplish its optimization task by successfully shifting nominal values of design parameters instead of the expensive tightening of component tolerances. Several numerical experiments for optimal design of a stepped bar assembly were conducted, which highlight the advantages of the proposed methodology.</description><subject>Algorithms</subject><subject>Assembly</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Design engineering</subject><subject>Design parameters</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Multiple objective analysis</subject><subject>Nonlinear analysis</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Production costs</subject><subject>Sensitivity analysis</subject><subject>Tolerances</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FJsk3Soyx-QWEveg5pdnbp0m1rkir6602p4MnTMPC8zzAvIdccbjmAvosAXAMDMIybUjBzQhZ8JSWTwItTsgChDJNamXNyEeMh04orsyDVZkjN0bU09S0G13mkrm1771LTd3SMTbenjh7HNu_1AX1qPpAOLqTGt0jjpwtH2k-K5hvDJTnbuTbi1e9ckrfHh9f1M6s2Ty_r-4p5yVVikmMNtSwLY3gtvC-3KyWKeit2WoPmhXGlks6gAlmglkYZQATvsTbFSnmQS3Ize4fQv48Ykz30Y-jySStEVoHWfKL4TPnQxxhwZ4eQXw1floOdSrNzaTaXZqfSrMkZMWdiZrs9hj_z_6Eff_NvRw</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Forouraghi, Babak</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20091001</creationdate><title>Optimal tolerance allocation using a multiobjective particle swarm optimizer</title><author>Forouraghi, Babak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-31eb0b395881b2cc9d4625bd2f7707158a963a8e6035e738680ee0cceb8546c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Assembly</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Design engineering</topic><topic>Design parameters</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Multiple objective analysis</topic><topic>Nonlinear analysis</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Production costs</topic><topic>Sensitivity analysis</topic><topic>Tolerances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forouraghi, Babak</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forouraghi, Babak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal tolerance allocation using a multiobjective particle swarm optimizer</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2009-10-01</date><risdate>2009</risdate><volume>44</volume><issue>7-8</issue><spage>710</spage><epage>724</epage><pages>710-724</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Particle swarm optimizers are routinely utilized in engineering design problems, but much work remains to take advantage of their full potential in the combined areas of sensitivity analysis and tolerance synthesis. In this paper, a novel Pareto-based multiobjective formulation is proposed to enhance the operations of a particle swarm optimizer and systematically distribute tolerances among various components of a mechanical assembly. The enhanced algorithm relies on nonlinear sensitivity analysis and the statistical root sum squares model to simultaneously optimize product performance criteria, the manufacturing cost, and the stack-up tolerance. It is shown that the proposed algorithm can accomplish its optimization task by successfully shifting nominal values of design parameters instead of the expensive tightening of component tolerances. Several numerical experiments for optimal design of a stepped bar assembly were conducted, which highlight the advantages of the proposed methodology.</abstract><cop>London</cop><pub>Springer-Verlag</pub><doi>10.1007/s00170-008-1892-8</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2009-10, Vol.44 (7-8), p.710-724 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2262507710 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Assembly CAE) and Design Computer-Aided Engineering (CAD Design engineering Design parameters Engineering Industrial and Production Engineering Mechanical Engineering Media Management Multiple objective analysis Nonlinear analysis Optimization Original Article Production costs Sensitivity analysis Tolerances |
title | Optimal tolerance allocation using a multiobjective particle swarm optimizer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20tolerance%20allocation%20using%20a%20multiobjective%20particle%20swarm%20optimizer&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Forouraghi,%20Babak&rft.date=2009-10-01&rft.volume=44&rft.issue=7-8&rft.spage=710&rft.epage=724&rft.pages=710-724&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-008-1892-8&rft_dat=%3Cproquest_cross%3E2262507710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262507710&rft_id=info:pmid/&rfr_iscdi=true |