A new approach to detection of defects in rolling element bearings based on statistical pattern recognition

The paper presents a new approach to the classification of rolling element bearing faults by implementing statistical pattern recognition. Diagnostics of rolling element bearing faults actually represents the problem of pattern classification and recognition, where the key step is feature extraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2009-11, Vol.45 (1-2), p.91-100
Hauptverfasser: Stepanic, Pavle, Latinovic, Ilija V., Djurovic, Zeljko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue 1-2
container_start_page 91
container_title International journal of advanced manufacturing technology
container_volume 45
creator Stepanic, Pavle
Latinovic, Ilija V.
Djurovic, Zeljko
description The paper presents a new approach to the classification of rolling element bearing faults by implementing statistical pattern recognition. Diagnostics of rolling element bearing faults actually represents the problem of pattern classification and recognition, where the key step is feature extraction from the vibration signal. Characterization of each recorded vibration signal is performed by a combination of signal's time-varying statistical parameters and characteristic rolling element bearing fault frequency components obtained through the envelope analysis method. In this way, an 18-dimensional vector of the vibration signal feature is obtained. Dimension reduction of the 18-dimensional feature vectors was performed afterward into two-dimensional vectors representing the training set for the design of parameter classifiers. The classification was performed in two classes, into defective and functional rolling element bearings. Main trait of parameter classifiers is simplicity in their design process, as opposed to classifiers based on neural networks, which employ complex training algorithms.
doi_str_mv 10.1007/s00170-009-1953-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262401497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262401497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a36ae2241f68c19f15b98ed1136403ae58f225d448a7f9f08b88c9bf882e61993</originalsourceid><addsrcrecordid>eNp1kE9LxDAUxIMouK5-AG8Bz9G8pE2T47L4Dxa86Dmk7cvatdvWJIv47U1ZwZOnx8D85jFDyDXwW-C8uoucQ8UZ54aBKSWrTsgCCimZ5FCekgUXSjNZKX1OLmLcZbcCpRfkY0UH_KJumsLomneaRtpiwiZ140BHn4XPItJuoGHs-27YUuxxj0OiNbqQdaS1i9jS7I_JpS6mrnE9nVxKGDKFzbgdujnvkpx510e8-r1L8vZw_7p-YpuXx-f1asMaCSoxJ5VDIQrwSjdgPJS10dgCSFVw6bDUXoiyLQrtKm8817XWjam91gIVGCOX5OaYmzt9HjAmuxsPYcgvrRBKFBwKU2UXHF1NGGMM6O0Uur0L3xa4nTe1x01t3tTOm9qZEUcmTnN1DH_J_0M_YK96Jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262401497</pqid></control><display><type>article</type><title>A new approach to detection of defects in rolling element bearings based on statistical pattern recognition</title><source>SpringerLink Journals - AutoHoldings</source><creator>Stepanic, Pavle ; Latinovic, Ilija V. ; Djurovic, Zeljko</creator><creatorcontrib>Stepanic, Pavle ; Latinovic, Ilija V. ; Djurovic, Zeljko</creatorcontrib><description>The paper presents a new approach to the classification of rolling element bearing faults by implementing statistical pattern recognition. Diagnostics of rolling element bearing faults actually represents the problem of pattern classification and recognition, where the key step is feature extraction from the vibration signal. Characterization of each recorded vibration signal is performed by a combination of signal's time-varying statistical parameters and characteristic rolling element bearing fault frequency components obtained through the envelope analysis method. In this way, an 18-dimensional vector of the vibration signal feature is obtained. Dimension reduction of the 18-dimensional feature vectors was performed afterward into two-dimensional vectors representing the training set for the design of parameter classifiers. The classification was performed in two classes, into defective and functional rolling element bearings. Main trait of parameter classifiers is simplicity in their design process, as opposed to classifiers based on neural networks, which employ complex training algorithms.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-009-1953-7</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>Algorithms ; CAE) and Design ; Classifiers ; Computer-Aided Engineering (CAD ; Design parameters ; Engineering ; Feature extraction ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Neural networks ; Original Article ; Pattern classification ; Pattern recognition ; Roller bearings ; Vibration analysis</subject><ispartof>International journal of advanced manufacturing technology, 2009-11, Vol.45 (1-2), p.91-100</ispartof><rights>Springer-Verlag London Limited 2009</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2009). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a36ae2241f68c19f15b98ed1136403ae58f225d448a7f9f08b88c9bf882e61993</citedby><cites>FETCH-LOGICAL-c316t-a36ae2241f68c19f15b98ed1136403ae58f225d448a7f9f08b88c9bf882e61993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-009-1953-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-009-1953-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Stepanic, Pavle</creatorcontrib><creatorcontrib>Latinovic, Ilija V.</creatorcontrib><creatorcontrib>Djurovic, Zeljko</creatorcontrib><title>A new approach to detection of defects in rolling element bearings based on statistical pattern recognition</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The paper presents a new approach to the classification of rolling element bearing faults by implementing statistical pattern recognition. Diagnostics of rolling element bearing faults actually represents the problem of pattern classification and recognition, where the key step is feature extraction from the vibration signal. Characterization of each recorded vibration signal is performed by a combination of signal's time-varying statistical parameters and characteristic rolling element bearing fault frequency components obtained through the envelope analysis method. In this way, an 18-dimensional vector of the vibration signal feature is obtained. Dimension reduction of the 18-dimensional feature vectors was performed afterward into two-dimensional vectors representing the training set for the design of parameter classifiers. The classification was performed in two classes, into defective and functional rolling element bearings. Main trait of parameter classifiers is simplicity in their design process, as opposed to classifiers based on neural networks, which employ complex training algorithms.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Classifiers</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Design parameters</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Pattern classification</subject><subject>Pattern recognition</subject><subject>Roller bearings</subject><subject>Vibration analysis</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE9LxDAUxIMouK5-AG8Bz9G8pE2T47L4Dxa86Dmk7cvatdvWJIv47U1ZwZOnx8D85jFDyDXwW-C8uoucQ8UZ54aBKSWrTsgCCimZ5FCekgUXSjNZKX1OLmLcZbcCpRfkY0UH_KJumsLomneaRtpiwiZ140BHn4XPItJuoGHs-27YUuxxj0OiNbqQdaS1i9jS7I_JpS6mrnE9nVxKGDKFzbgdujnvkpx510e8-r1L8vZw_7p-YpuXx-f1asMaCSoxJ5VDIQrwSjdgPJS10dgCSFVw6bDUXoiyLQrtKm8817XWjam91gIVGCOX5OaYmzt9HjAmuxsPYcgvrRBKFBwKU2UXHF1NGGMM6O0Uur0L3xa4nTe1x01t3tTOm9qZEUcmTnN1DH_J_0M_YK96Jw</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Stepanic, Pavle</creator><creator>Latinovic, Ilija V.</creator><creator>Djurovic, Zeljko</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20091101</creationdate><title>A new approach to detection of defects in rolling element bearings based on statistical pattern recognition</title><author>Stepanic, Pavle ; Latinovic, Ilija V. ; Djurovic, Zeljko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a36ae2241f68c19f15b98ed1136403ae58f225d448a7f9f08b88c9bf882e61993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Classifiers</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Design parameters</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Pattern classification</topic><topic>Pattern recognition</topic><topic>Roller bearings</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stepanic, Pavle</creatorcontrib><creatorcontrib>Latinovic, Ilija V.</creatorcontrib><creatorcontrib>Djurovic, Zeljko</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stepanic, Pavle</au><au>Latinovic, Ilija V.</au><au>Djurovic, Zeljko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new approach to detection of defects in rolling element bearings based on statistical pattern recognition</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>45</volume><issue>1-2</issue><spage>91</spage><epage>100</epage><pages>91-100</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The paper presents a new approach to the classification of rolling element bearing faults by implementing statistical pattern recognition. Diagnostics of rolling element bearing faults actually represents the problem of pattern classification and recognition, where the key step is feature extraction from the vibration signal. Characterization of each recorded vibration signal is performed by a combination of signal's time-varying statistical parameters and characteristic rolling element bearing fault frequency components obtained through the envelope analysis method. In this way, an 18-dimensional vector of the vibration signal feature is obtained. Dimension reduction of the 18-dimensional feature vectors was performed afterward into two-dimensional vectors representing the training set for the design of parameter classifiers. The classification was performed in two classes, into defective and functional rolling element bearings. Main trait of parameter classifiers is simplicity in their design process, as opposed to classifiers based on neural networks, which employ complex training algorithms.</abstract><cop>London</cop><pub>Springer-Verlag</pub><doi>10.1007/s00170-009-1953-7</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2009-11, Vol.45 (1-2), p.91-100
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262401497
source SpringerLink Journals - AutoHoldings
subjects Algorithms
CAE) and Design
Classifiers
Computer-Aided Engineering (CAD
Design parameters
Engineering
Feature extraction
Industrial and Production Engineering
Mechanical Engineering
Media Management
Neural networks
Original Article
Pattern classification
Pattern recognition
Roller bearings
Vibration analysis
title A new approach to detection of defects in rolling element bearings based on statistical pattern recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20approach%20to%20detection%20of%20defects%20in%20rolling%20element%20bearings%20based%20on%20statistical%20pattern%20recognition&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Stepanic,%20Pavle&rft.date=2009-11-01&rft.volume=45&rft.issue=1-2&rft.spage=91&rft.epage=100&rft.pages=91-100&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-009-1953-7&rft_dat=%3Cproquest_cross%3E2262401497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262401497&rft_id=info:pmid/&rfr_iscdi=true