A new approach to detection of defects in rolling element bearings based on statistical pattern recognition
The paper presents a new approach to the classification of rolling element bearing faults by implementing statistical pattern recognition. Diagnostics of rolling element bearing faults actually represents the problem of pattern classification and recognition, where the key step is feature extraction...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2009-11, Vol.45 (1-2), p.91-100 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | 1-2 |
container_start_page | 91 |
container_title | International journal of advanced manufacturing technology |
container_volume | 45 |
creator | Stepanic, Pavle Latinovic, Ilija V. Djurovic, Zeljko |
description | The paper presents a new approach to the classification of rolling element bearing faults by implementing statistical pattern recognition. Diagnostics of rolling element bearing faults actually represents the problem of pattern classification and recognition, where the key step is feature extraction from the vibration signal. Characterization of each recorded vibration signal is performed by a combination of signal's time-varying statistical parameters and characteristic rolling element bearing fault frequency components obtained through the envelope analysis method. In this way, an 18-dimensional vector of the vibration signal feature is obtained. Dimension reduction of the 18-dimensional feature vectors was performed afterward into two-dimensional vectors representing the training set for the design of parameter classifiers. The classification was performed in two classes, into defective and functional rolling element bearings. Main trait of parameter classifiers is simplicity in their design process, as opposed to classifiers based on neural networks, which employ complex training algorithms. |
doi_str_mv | 10.1007/s00170-009-1953-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262401497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262401497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a36ae2241f68c19f15b98ed1136403ae58f225d448a7f9f08b88c9bf882e61993</originalsourceid><addsrcrecordid>eNp1kE9LxDAUxIMouK5-AG8Bz9G8pE2T47L4Dxa86Dmk7cvatdvWJIv47U1ZwZOnx8D85jFDyDXwW-C8uoucQ8UZ54aBKSWrTsgCCimZ5FCekgUXSjNZKX1OLmLcZbcCpRfkY0UH_KJumsLomneaRtpiwiZ140BHn4XPItJuoGHs-27YUuxxj0OiNbqQdaS1i9jS7I_JpS6mrnE9nVxKGDKFzbgdujnvkpx510e8-r1L8vZw_7p-YpuXx-f1asMaCSoxJ5VDIQrwSjdgPJS10dgCSFVw6bDUXoiyLQrtKm8817XWjam91gIVGCOX5OaYmzt9HjAmuxsPYcgvrRBKFBwKU2UXHF1NGGMM6O0Uur0L3xa4nTe1x01t3tTOm9qZEUcmTnN1DH_J_0M_YK96Jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262401497</pqid></control><display><type>article</type><title>A new approach to detection of defects in rolling element bearings based on statistical pattern recognition</title><source>SpringerLink Journals - AutoHoldings</source><creator>Stepanic, Pavle ; Latinovic, Ilija V. ; Djurovic, Zeljko</creator><creatorcontrib>Stepanic, Pavle ; Latinovic, Ilija V. ; Djurovic, Zeljko</creatorcontrib><description>The paper presents a new approach to the classification of rolling element bearing faults by implementing statistical pattern recognition. Diagnostics of rolling element bearing faults actually represents the problem of pattern classification and recognition, where the key step is feature extraction from the vibration signal. Characterization of each recorded vibration signal is performed by a combination of signal's time-varying statistical parameters and characteristic rolling element bearing fault frequency components obtained through the envelope analysis method. In this way, an 18-dimensional vector of the vibration signal feature is obtained. Dimension reduction of the 18-dimensional feature vectors was performed afterward into two-dimensional vectors representing the training set for the design of parameter classifiers. The classification was performed in two classes, into defective and functional rolling element bearings. Main trait of parameter classifiers is simplicity in their design process, as opposed to classifiers based on neural networks, which employ complex training algorithms.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-009-1953-7</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>Algorithms ; CAE) and Design ; Classifiers ; Computer-Aided Engineering (CAD ; Design parameters ; Engineering ; Feature extraction ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Neural networks ; Original Article ; Pattern classification ; Pattern recognition ; Roller bearings ; Vibration analysis</subject><ispartof>International journal of advanced manufacturing technology, 2009-11, Vol.45 (1-2), p.91-100</ispartof><rights>Springer-Verlag London Limited 2009</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2009). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a36ae2241f68c19f15b98ed1136403ae58f225d448a7f9f08b88c9bf882e61993</citedby><cites>FETCH-LOGICAL-c316t-a36ae2241f68c19f15b98ed1136403ae58f225d448a7f9f08b88c9bf882e61993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-009-1953-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-009-1953-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Stepanic, Pavle</creatorcontrib><creatorcontrib>Latinovic, Ilija V.</creatorcontrib><creatorcontrib>Djurovic, Zeljko</creatorcontrib><title>A new approach to detection of defects in rolling element bearings based on statistical pattern recognition</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The paper presents a new approach to the classification of rolling element bearing faults by implementing statistical pattern recognition. Diagnostics of rolling element bearing faults actually represents the problem of pattern classification and recognition, where the key step is feature extraction from the vibration signal. Characterization of each recorded vibration signal is performed by a combination of signal's time-varying statistical parameters and characteristic rolling element bearing fault frequency components obtained through the envelope analysis method. In this way, an 18-dimensional vector of the vibration signal feature is obtained. Dimension reduction of the 18-dimensional feature vectors was performed afterward into two-dimensional vectors representing the training set for the design of parameter classifiers. The classification was performed in two classes, into defective and functional rolling element bearings. Main trait of parameter classifiers is simplicity in their design process, as opposed to classifiers based on neural networks, which employ complex training algorithms.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Classifiers</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Design parameters</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Pattern classification</subject><subject>Pattern recognition</subject><subject>Roller bearings</subject><subject>Vibration analysis</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE9LxDAUxIMouK5-AG8Bz9G8pE2T47L4Dxa86Dmk7cvatdvWJIv47U1ZwZOnx8D85jFDyDXwW-C8uoucQ8UZ54aBKSWrTsgCCimZ5FCekgUXSjNZKX1OLmLcZbcCpRfkY0UH_KJumsLomneaRtpiwiZ140BHn4XPItJuoGHs-27YUuxxj0OiNbqQdaS1i9jS7I_JpS6mrnE9nVxKGDKFzbgdujnvkpx510e8-r1L8vZw_7p-YpuXx-f1asMaCSoxJ5VDIQrwSjdgPJS10dgCSFVw6bDUXoiyLQrtKm8817XWjam91gIVGCOX5OaYmzt9HjAmuxsPYcgvrRBKFBwKU2UXHF1NGGMM6O0Uur0L3xa4nTe1x01t3tTOm9qZEUcmTnN1DH_J_0M_YK96Jw</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Stepanic, Pavle</creator><creator>Latinovic, Ilija V.</creator><creator>Djurovic, Zeljko</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20091101</creationdate><title>A new approach to detection of defects in rolling element bearings based on statistical pattern recognition</title><author>Stepanic, Pavle ; Latinovic, Ilija V. ; Djurovic, Zeljko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a36ae2241f68c19f15b98ed1136403ae58f225d448a7f9f08b88c9bf882e61993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Classifiers</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Design parameters</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Pattern classification</topic><topic>Pattern recognition</topic><topic>Roller bearings</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stepanic, Pavle</creatorcontrib><creatorcontrib>Latinovic, Ilija V.</creatorcontrib><creatorcontrib>Djurovic, Zeljko</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stepanic, Pavle</au><au>Latinovic, Ilija V.</au><au>Djurovic, Zeljko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new approach to detection of defects in rolling element bearings based on statistical pattern recognition</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>45</volume><issue>1-2</issue><spage>91</spage><epage>100</epage><pages>91-100</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The paper presents a new approach to the classification of rolling element bearing faults by implementing statistical pattern recognition. Diagnostics of rolling element bearing faults actually represents the problem of pattern classification and recognition, where the key step is feature extraction from the vibration signal. Characterization of each recorded vibration signal is performed by a combination of signal's time-varying statistical parameters and characteristic rolling element bearing fault frequency components obtained through the envelope analysis method. In this way, an 18-dimensional vector of the vibration signal feature is obtained. Dimension reduction of the 18-dimensional feature vectors was performed afterward into two-dimensional vectors representing the training set for the design of parameter classifiers. The classification was performed in two classes, into defective and functional rolling element bearings. Main trait of parameter classifiers is simplicity in their design process, as opposed to classifiers based on neural networks, which employ complex training algorithms.</abstract><cop>London</cop><pub>Springer-Verlag</pub><doi>10.1007/s00170-009-1953-7</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2009-11, Vol.45 (1-2), p.91-100 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2262401497 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms CAE) and Design Classifiers Computer-Aided Engineering (CAD Design parameters Engineering Feature extraction Industrial and Production Engineering Mechanical Engineering Media Management Neural networks Original Article Pattern classification Pattern recognition Roller bearings Vibration analysis |
title | A new approach to detection of defects in rolling element bearings based on statistical pattern recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20approach%20to%20detection%20of%20defects%20in%20rolling%20element%20bearings%20based%20on%20statistical%20pattern%20recognition&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Stepanic,%20Pavle&rft.date=2009-11-01&rft.volume=45&rft.issue=1-2&rft.spage=91&rft.epage=100&rft.pages=91-100&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-009-1953-7&rft_dat=%3Cproquest_cross%3E2262401497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262401497&rft_id=info:pmid/&rfr_iscdi=true |