Microstructure and process characterization of laser-cold metal transfer hybrid welding of AA6061 aluminum alloy
Fiber laser-cold metal transfer (CMT) hybrid welding of an AA6061 aluminum alloy thin sheet was carried out. The microstructure was analyzed by an optical microscope, scanning electron microscope, and energy-dispersive spectrometry. The cross-weld tensile strength and hardness were tested to evaluat...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2013-09, Vol.68 (5-8), p.1253-1260 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1260 |
---|---|
container_issue | 5-8 |
container_start_page | 1253 |
container_title | International journal of advanced manufacturing technology |
container_volume | 68 |
creator | Zhang, C. Li, G. Gao, M. Yan, J. Zeng, X. Y. |
description | Fiber laser-cold metal transfer (CMT) hybrid welding of an AA6061 aluminum alloy thin sheet was carried out. The microstructure was analyzed by an optical microscope, scanning electron microscope, and energy-dispersive spectrometry. The cross-weld tensile strength and hardness were tested to evaluate the mechanical properties of the welded joint. Accepted joints with finer microstructure and free of defects were obtained. The tensile strength was up to 223 MPa, 10 % stronger than that of a laser-pulse metal inert gas (PMIG) hybrid welded joint. Due to the featured CMT arc current waveform, stronger constitutional supercooling and more heterogeneous nuclei were generated in the weld pool of laser-CMT hybrid welding in comparison with laser-PMIG hybrid welding. It led to the results that the laser-CMT joint has a finer microstructure and narrower columnar dendrite zone compared with the laser-PMIG joint. Because of the stabilization of the CMT arc on the laser-induced keyhole, spatters were seldom found during laser-CMT hybrid welding and few hydrogen pores appeared in the joint. |
doi_str_mv | 10.1007/s00170-013-4916-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262393485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262393485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5f0aed1f9ce88bfd77e0fc3b6f8087fd86163b6cb85f230bca36a0618d43ecf93</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9GkadP0uCx-geJFzyFNJrtd-rEmKVJ_vSkVPHmaDDzvzORB6JrRW0ZpeRcoZSUllHGSV0yQ6QStWM454ZQVp2hFMyEJL4U8RxchHBItmJArdHxtjB9C9KOJowese4uPfjAQAjZ77bWJ4JtvHZuhx4PDrQ7giRlaizuIusXR6z448Hg_1b6x-Ata2_S7md1sBBUM63bsmn7s0qMdpkt05nQb4Oq3rtHHw_379om8vD0-bzcvxHAmIikc1WCZqwxIWTtblkCd4bVwksrSWZnOT52pZeEyTmujudBpm7Q5B-MqvkY3y9z0m88RQlSHYfR9WqmyTGS84rksEsUWapYQPDh19E2n_aQYVbNYtYhVSayaxaopZbIlExLb78D_Tf4_9APBXn3j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262393485</pqid></control><display><type>article</type><title>Microstructure and process characterization of laser-cold metal transfer hybrid welding of AA6061 aluminum alloy</title><source>SpringerLink Journals</source><creator>Zhang, C. ; Li, G. ; Gao, M. ; Yan, J. ; Zeng, X. Y.</creator><creatorcontrib>Zhang, C. ; Li, G. ; Gao, M. ; Yan, J. ; Zeng, X. Y.</creatorcontrib><description>Fiber laser-cold metal transfer (CMT) hybrid welding of an AA6061 aluminum alloy thin sheet was carried out. The microstructure was analyzed by an optical microscope, scanning electron microscope, and energy-dispersive spectrometry. The cross-weld tensile strength and hardness were tested to evaluate the mechanical properties of the welded joint. Accepted joints with finer microstructure and free of defects were obtained. The tensile strength was up to 223 MPa, 10 % stronger than that of a laser-pulse metal inert gas (PMIG) hybrid welded joint. Due to the featured CMT arc current waveform, stronger constitutional supercooling and more heterogeneous nuclei were generated in the weld pool of laser-CMT hybrid welding in comparison with laser-PMIG hybrid welding. It led to the results that the laser-CMT joint has a finer microstructure and narrower columnar dendrite zone compared with the laser-PMIG joint. Because of the stabilization of the CMT arc on the laser-induced keyhole, spatters were seldom found during laser-CMT hybrid welding and few hydrogen pores appeared in the joint.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-013-4916-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Aluminum alloys ; Aluminum base alloys ; CAE) and Design ; Cold welding ; Computer-Aided Engineering (CAD ; Dendritic structure ; Electron microscopes ; Engineering ; Fiber lasers ; Industrial and Production Engineering ; Laser beam welding ; Lasers ; Mechanical Engineering ; Mechanical properties ; Media Management ; Microstructure ; Optical microscopes ; Original Article ; Rare gases ; Supercooling ; Tensile strength ; Welded joints</subject><ispartof>International journal of advanced manufacturing technology, 2013-09, Vol.68 (5-8), p.1253-1260</ispartof><rights>Springer-Verlag London 2013</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5f0aed1f9ce88bfd77e0fc3b6f8087fd86163b6cb85f230bca36a0618d43ecf93</citedby><cites>FETCH-LOGICAL-c316t-5f0aed1f9ce88bfd77e0fc3b6f8087fd86163b6cb85f230bca36a0618d43ecf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-013-4916-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-013-4916-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, C.</creatorcontrib><creatorcontrib>Li, G.</creatorcontrib><creatorcontrib>Gao, M.</creatorcontrib><creatorcontrib>Yan, J.</creatorcontrib><creatorcontrib>Zeng, X. Y.</creatorcontrib><title>Microstructure and process characterization of laser-cold metal transfer hybrid welding of AA6061 aluminum alloy</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Fiber laser-cold metal transfer (CMT) hybrid welding of an AA6061 aluminum alloy thin sheet was carried out. The microstructure was analyzed by an optical microscope, scanning electron microscope, and energy-dispersive spectrometry. The cross-weld tensile strength and hardness were tested to evaluate the mechanical properties of the welded joint. Accepted joints with finer microstructure and free of defects were obtained. The tensile strength was up to 223 MPa, 10 % stronger than that of a laser-pulse metal inert gas (PMIG) hybrid welded joint. Due to the featured CMT arc current waveform, stronger constitutional supercooling and more heterogeneous nuclei were generated in the weld pool of laser-CMT hybrid welding in comparison with laser-PMIG hybrid welding. It led to the results that the laser-CMT joint has a finer microstructure and narrower columnar dendrite zone compared with the laser-PMIG joint. Because of the stabilization of the CMT arc on the laser-induced keyhole, spatters were seldom found during laser-CMT hybrid welding and few hydrogen pores appeared in the joint.</description><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>CAE) and Design</subject><subject>Cold welding</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Dendritic structure</subject><subject>Electron microscopes</subject><subject>Engineering</subject><subject>Fiber lasers</subject><subject>Industrial and Production Engineering</subject><subject>Laser beam welding</subject><subject>Lasers</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Microstructure</subject><subject>Optical microscopes</subject><subject>Original Article</subject><subject>Rare gases</subject><subject>Supercooling</subject><subject>Tensile strength</subject><subject>Welded joints</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9GkadP0uCx-geJFzyFNJrtd-rEmKVJ_vSkVPHmaDDzvzORB6JrRW0ZpeRcoZSUllHGSV0yQ6QStWM454ZQVp2hFMyEJL4U8RxchHBItmJArdHxtjB9C9KOJowese4uPfjAQAjZ77bWJ4JtvHZuhx4PDrQ7giRlaizuIusXR6z448Hg_1b6x-Ata2_S7md1sBBUM63bsmn7s0qMdpkt05nQb4Oq3rtHHw_379om8vD0-bzcvxHAmIikc1WCZqwxIWTtblkCd4bVwksrSWZnOT52pZeEyTmujudBpm7Q5B-MqvkY3y9z0m88RQlSHYfR9WqmyTGS84rksEsUWapYQPDh19E2n_aQYVbNYtYhVSayaxaopZbIlExLb78D_Tf4_9APBXn3j</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Zhang, C.</creator><creator>Li, G.</creator><creator>Gao, M.</creator><creator>Yan, J.</creator><creator>Zeng, X. Y.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130901</creationdate><title>Microstructure and process characterization of laser-cold metal transfer hybrid welding of AA6061 aluminum alloy</title><author>Zhang, C. ; Li, G. ; Gao, M. ; Yan, J. ; Zeng, X. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5f0aed1f9ce88bfd77e0fc3b6f8087fd86163b6cb85f230bca36a0618d43ecf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>CAE) and Design</topic><topic>Cold welding</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Dendritic structure</topic><topic>Electron microscopes</topic><topic>Engineering</topic><topic>Fiber lasers</topic><topic>Industrial and Production Engineering</topic><topic>Laser beam welding</topic><topic>Lasers</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Microstructure</topic><topic>Optical microscopes</topic><topic>Original Article</topic><topic>Rare gases</topic><topic>Supercooling</topic><topic>Tensile strength</topic><topic>Welded joints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, C.</creatorcontrib><creatorcontrib>Li, G.</creatorcontrib><creatorcontrib>Gao, M.</creatorcontrib><creatorcontrib>Yan, J.</creatorcontrib><creatorcontrib>Zeng, X. Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, C.</au><au>Li, G.</au><au>Gao, M.</au><au>Yan, J.</au><au>Zeng, X. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and process characterization of laser-cold metal transfer hybrid welding of AA6061 aluminum alloy</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>68</volume><issue>5-8</issue><spage>1253</spage><epage>1260</epage><pages>1253-1260</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Fiber laser-cold metal transfer (CMT) hybrid welding of an AA6061 aluminum alloy thin sheet was carried out. The microstructure was analyzed by an optical microscope, scanning electron microscope, and energy-dispersive spectrometry. The cross-weld tensile strength and hardness were tested to evaluate the mechanical properties of the welded joint. Accepted joints with finer microstructure and free of defects were obtained. The tensile strength was up to 223 MPa, 10 % stronger than that of a laser-pulse metal inert gas (PMIG) hybrid welded joint. Due to the featured CMT arc current waveform, stronger constitutional supercooling and more heterogeneous nuclei were generated in the weld pool of laser-CMT hybrid welding in comparison with laser-PMIG hybrid welding. It led to the results that the laser-CMT joint has a finer microstructure and narrower columnar dendrite zone compared with the laser-PMIG joint. Because of the stabilization of the CMT arc on the laser-induced keyhole, spatters were seldom found during laser-CMT hybrid welding and few hydrogen pores appeared in the joint.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-013-4916-y</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2013-09, Vol.68 (5-8), p.1253-1260 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2262393485 |
source | SpringerLink Journals |
subjects | Aluminum alloys Aluminum base alloys CAE) and Design Cold welding Computer-Aided Engineering (CAD Dendritic structure Electron microscopes Engineering Fiber lasers Industrial and Production Engineering Laser beam welding Lasers Mechanical Engineering Mechanical properties Media Management Microstructure Optical microscopes Original Article Rare gases Supercooling Tensile strength Welded joints |
title | Microstructure and process characterization of laser-cold metal transfer hybrid welding of AA6061 aluminum alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20process%20characterization%20of%20laser-cold%20metal%20transfer%20hybrid%20welding%20of%20AA6061%20aluminum%20alloy&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Zhang,%20C.&rft.date=2013-09-01&rft.volume=68&rft.issue=5-8&rft.spage=1253&rft.epage=1260&rft.pages=1253-1260&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-013-4916-y&rft_dat=%3Cproquest_cross%3E2262393485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262393485&rft_id=info:pmid/&rfr_iscdi=true |