Kinematic and dynamic modeling of viscoelastic robotic manipulators using Timoshenko beam theory: theory and experiment

This paper presents an investigation into the development of modeling of n -viscoelastic robotic manipulators. The dynamic model of the system is derived using Gibbs-Appell formulation and assumed mode method. When the beam is short in length direction, shear deformation is a factor that may have si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2014-03, Vol.71 (5-8), p.1005-1018
Hauptverfasser: Korayem, M. H., Shafei, A. M., Absalan, F., Kadkhodaei, B., Azimi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1018
container_issue 5-8
container_start_page 1005
container_title International journal of advanced manufacturing technology
container_volume 71
creator Korayem, M. H.
Shafei, A. M.
Absalan, F.
Kadkhodaei, B.
Azimi, A.
description This paper presents an investigation into the development of modeling of n -viscoelastic robotic manipulators. The dynamic model of the system is derived using Gibbs-Appell formulation and assumed mode method. When the beam is short in length direction, shear deformation is a factor that may have significant effects on system dynamic. So, in modeling, the assumption of Timoshenko beam theory and associated mode shapes has been considered. Although including the effect of damping in continuous systems makes the formulations more complicated, two important damping mechanisms, namely, Kelvin-Voigt damping as internal damping and the viscous air damping as external damping have been considered. Based on derived formulation, a non-linear recursive algorithm is developed for deriving the inverse dynamic equation of motion, systematically. The performance of the proposed algorithm was assessed in terms of the required mathematical operations for deriving the kinematic and dynamic equations of the mechanical system. Finally, to validate the proposed formulation, a comparative assessment between the results achieved from experiment and simulation is presented in time and frequency domains.
doi_str_mv 10.1007/s00170-013-5391-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262393440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262393440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e5a7a056f08bd8c02c665d220126df51d0f21b9c06e38526fd263bda107f55db3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9giMQfes2snZUMVX6ISS5ktJ7bblMQOdgL035PQSkxM9w3nXluHkEuEawTIbiIAZpACspSzOaZ4RCY4YyxlgPyYTICKPGWZyE_JWYzbgRYo8gn5eqmcaVRXlYlyOtE7p5rhbrw2deXWibfJZxVLb2oVRyj4wo_ZKFe1fa06H2LSxxFdVY2PG-PefVIY1STdxviwuz3k77z5bk2oGuO6c3JiVR3NxSGn5O3hfrV4Spevj8-Lu2VaMhRdarjKFHBhIS90XgItheCaUkAqtOWowVIs5iUIw3JOhdVUsEIrhMxyrgs2JVf73Tb4j97ETm59H9zwpKRUUDZnsxkMFO6pMvgYg7GyHb6pwk4iyNGv3PuVg185-pU4dOi-EwfWrU34W_6_9AN-gn-h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262393440</pqid></control><display><type>article</type><title>Kinematic and dynamic modeling of viscoelastic robotic manipulators using Timoshenko beam theory: theory and experiment</title><source>SpringerLink Journals - AutoHoldings</source><creator>Korayem, M. H. ; Shafei, A. M. ; Absalan, F. ; Kadkhodaei, B. ; Azimi, A.</creator><creatorcontrib>Korayem, M. H. ; Shafei, A. M. ; Absalan, F. ; Kadkhodaei, B. ; Azimi, A.</creatorcontrib><description>This paper presents an investigation into the development of modeling of n -viscoelastic robotic manipulators. The dynamic model of the system is derived using Gibbs-Appell formulation and assumed mode method. When the beam is short in length direction, shear deformation is a factor that may have significant effects on system dynamic. So, in modeling, the assumption of Timoshenko beam theory and associated mode shapes has been considered. Although including the effect of damping in continuous systems makes the formulations more complicated, two important damping mechanisms, namely, Kelvin-Voigt damping as internal damping and the viscous air damping as external damping have been considered. Based on derived formulation, a non-linear recursive algorithm is developed for deriving the inverse dynamic equation of motion, systematically. The performance of the proposed algorithm was assessed in terms of the required mathematical operations for deriving the kinematic and dynamic equations of the mechanical system. Finally, to validate the proposed formulation, a comparative assessment between the results achieved from experiment and simulation is presented in time and frequency domains.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-013-5391-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Beam theory (structures) ; CAE) and Design ; Computer simulation ; Computer-Aided Engineering (CAD ; Damping ; Deformation effects ; Deformation mechanisms ; Dynamic models ; Engineering ; Equations of motion ; Formulations ; Industrial and Production Engineering ; Kinematics ; Manipulators ; Mechanical Engineering ; Mechanical systems ; Media Management ; Original Article ; Robot arms ; Shear deformation ; Timoshenko beams ; Viscoelasticity</subject><ispartof>International journal of advanced manufacturing technology, 2014-03, Vol.71 (5-8), p.1005-1018</ispartof><rights>Springer-Verlag London 2013</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e5a7a056f08bd8c02c665d220126df51d0f21b9c06e38526fd263bda107f55db3</citedby><cites>FETCH-LOGICAL-c316t-e5a7a056f08bd8c02c665d220126df51d0f21b9c06e38526fd263bda107f55db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-013-5391-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-013-5391-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Korayem, M. H.</creatorcontrib><creatorcontrib>Shafei, A. M.</creatorcontrib><creatorcontrib>Absalan, F.</creatorcontrib><creatorcontrib>Kadkhodaei, B.</creatorcontrib><creatorcontrib>Azimi, A.</creatorcontrib><title>Kinematic and dynamic modeling of viscoelastic robotic manipulators using Timoshenko beam theory: theory and experiment</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>This paper presents an investigation into the development of modeling of n -viscoelastic robotic manipulators. The dynamic model of the system is derived using Gibbs-Appell formulation and assumed mode method. When the beam is short in length direction, shear deformation is a factor that may have significant effects on system dynamic. So, in modeling, the assumption of Timoshenko beam theory and associated mode shapes has been considered. Although including the effect of damping in continuous systems makes the formulations more complicated, two important damping mechanisms, namely, Kelvin-Voigt damping as internal damping and the viscous air damping as external damping have been considered. Based on derived formulation, a non-linear recursive algorithm is developed for deriving the inverse dynamic equation of motion, systematically. The performance of the proposed algorithm was assessed in terms of the required mathematical operations for deriving the kinematic and dynamic equations of the mechanical system. Finally, to validate the proposed formulation, a comparative assessment between the results achieved from experiment and simulation is presented in time and frequency domains.</description><subject>Algorithms</subject><subject>Beam theory (structures)</subject><subject>CAE) and Design</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Damping</subject><subject>Deformation effects</subject><subject>Deformation mechanisms</subject><subject>Dynamic models</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Formulations</subject><subject>Industrial and Production Engineering</subject><subject>Kinematics</subject><subject>Manipulators</subject><subject>Mechanical Engineering</subject><subject>Mechanical systems</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Robot arms</subject><subject>Shear deformation</subject><subject>Timoshenko beams</subject><subject>Viscoelasticity</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kD1PwzAURS0EEqXwA9giMQfes2snZUMVX6ISS5ktJ7bblMQOdgL035PQSkxM9w3nXluHkEuEawTIbiIAZpACspSzOaZ4RCY4YyxlgPyYTICKPGWZyE_JWYzbgRYo8gn5eqmcaVRXlYlyOtE7p5rhbrw2deXWibfJZxVLb2oVRyj4wo_ZKFe1fa06H2LSxxFdVY2PG-PefVIY1STdxviwuz3k77z5bk2oGuO6c3JiVR3NxSGn5O3hfrV4Spevj8-Lu2VaMhRdarjKFHBhIS90XgItheCaUkAqtOWowVIs5iUIw3JOhdVUsEIrhMxyrgs2JVf73Tb4j97ETm59H9zwpKRUUDZnsxkMFO6pMvgYg7GyHb6pwk4iyNGv3PuVg185-pU4dOi-EwfWrU34W_6_9AN-gn-h</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Korayem, M. H.</creator><creator>Shafei, A. M.</creator><creator>Absalan, F.</creator><creator>Kadkhodaei, B.</creator><creator>Azimi, A.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140301</creationdate><title>Kinematic and dynamic modeling of viscoelastic robotic manipulators using Timoshenko beam theory: theory and experiment</title><author>Korayem, M. H. ; Shafei, A. M. ; Absalan, F. ; Kadkhodaei, B. ; Azimi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e5a7a056f08bd8c02c665d220126df51d0f21b9c06e38526fd263bda107f55db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Beam theory (structures)</topic><topic>CAE) and Design</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Damping</topic><topic>Deformation effects</topic><topic>Deformation mechanisms</topic><topic>Dynamic models</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Formulations</topic><topic>Industrial and Production Engineering</topic><topic>Kinematics</topic><topic>Manipulators</topic><topic>Mechanical Engineering</topic><topic>Mechanical systems</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Robot arms</topic><topic>Shear deformation</topic><topic>Timoshenko beams</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korayem, M. H.</creatorcontrib><creatorcontrib>Shafei, A. M.</creatorcontrib><creatorcontrib>Absalan, F.</creatorcontrib><creatorcontrib>Kadkhodaei, B.</creatorcontrib><creatorcontrib>Azimi, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korayem, M. H.</au><au>Shafei, A. M.</au><au>Absalan, F.</au><au>Kadkhodaei, B.</au><au>Azimi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinematic and dynamic modeling of viscoelastic robotic manipulators using Timoshenko beam theory: theory and experiment</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>71</volume><issue>5-8</issue><spage>1005</spage><epage>1018</epage><pages>1005-1018</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This paper presents an investigation into the development of modeling of n -viscoelastic robotic manipulators. The dynamic model of the system is derived using Gibbs-Appell formulation and assumed mode method. When the beam is short in length direction, shear deformation is a factor that may have significant effects on system dynamic. So, in modeling, the assumption of Timoshenko beam theory and associated mode shapes has been considered. Although including the effect of damping in continuous systems makes the formulations more complicated, two important damping mechanisms, namely, Kelvin-Voigt damping as internal damping and the viscous air damping as external damping have been considered. Based on derived formulation, a non-linear recursive algorithm is developed for deriving the inverse dynamic equation of motion, systematically. The performance of the proposed algorithm was assessed in terms of the required mathematical operations for deriving the kinematic and dynamic equations of the mechanical system. Finally, to validate the proposed formulation, a comparative assessment between the results achieved from experiment and simulation is presented in time and frequency domains.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-013-5391-1</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2014-03, Vol.71 (5-8), p.1005-1018
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262393440
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Beam theory (structures)
CAE) and Design
Computer simulation
Computer-Aided Engineering (CAD
Damping
Deformation effects
Deformation mechanisms
Dynamic models
Engineering
Equations of motion
Formulations
Industrial and Production Engineering
Kinematics
Manipulators
Mechanical Engineering
Mechanical systems
Media Management
Original Article
Robot arms
Shear deformation
Timoshenko beams
Viscoelasticity
title Kinematic and dynamic modeling of viscoelastic robotic manipulators using Timoshenko beam theory: theory and experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinematic%20and%20dynamic%20modeling%20of%20viscoelastic%20robotic%20manipulators%20using%20Timoshenko%20beam%20theory:%20theory%20and%20experiment&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Korayem,%20M.%20H.&rft.date=2014-03-01&rft.volume=71&rft.issue=5-8&rft.spage=1005&rft.epage=1018&rft.pages=1005-1018&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-013-5391-1&rft_dat=%3Cproquest_cross%3E2262393440%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262393440&rft_id=info:pmid/&rfr_iscdi=true