Optimization of operator allocation in a large multi product assembly shop through unique integration of simulation and genetic algorithm

This study presents an integrated simulation and genetic algorithm (GA) for optimum operator allocation in a large multi product assembly shop. At first, simulation is used as an exquisite tool for modeling and analyzing the true performance of the system. Then, GA is used to maximize throughput of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2015-01, Vol.76 (1-4), p.471-486
Hauptverfasser: Azadeh, A., Asadzadeh, S. M., Tadayoun, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 486
container_issue 1-4
container_start_page 471
container_title International journal of advanced manufacturing technology
container_volume 76
creator Azadeh, A.
Asadzadeh, S. M.
Tadayoun, S.
description This study presents an integrated simulation and genetic algorithm (GA) for optimum operator allocation in a large multi product assembly shop. At first, simulation is used as an exquisite tool for modeling and analyzing the true performance of the system. Then, GA is used to maximize throughput of the system. In other words, optimal number of operators is found using GA such that the throughput is maximized. It is shown that the integrated GA-simulation approach yields considerable savings and benefits. The focus of the GA-simulation approach is on complex problem settings where there is random stochastic variability in the modeling environment. The results of this study show that the integrated GA-simulation is ideal for problems with several numbers of parameters and variables, and complex objective function. This is the first study that integrates GA and simulation for optimum allocation of operators in multi product assembly shops.
doi_str_mv 10.1007/s00170-014-6213-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262392974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262392974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-3506bd6eb1f3582ab854fbe3b5fb59ebe75b47e4fa5ab3e44fcc20e1c9ad80b3</originalsourceid><addsrcrecordid>eNp1kM1KxTAQhYMoeL36AO4Crqv5b7sU8Q8u3I37kLTT3kjb1CRd6Bv41kYqunI1zHC-MzMHoUtKrikh5U0khJakIFQUilFe1EdoQwXnBSdUHqMNYaoqeKmqU3QW42tWK6qqDfrcz8mN7sMk5yfsO-xnCCb5gM0w-GYduwkbPJjQAx6XITk8B98uTcImRhjt8I7jwc84HYJf-gNeJve2QKYS9OHXOLrMrp2ZWtzDBMk1eU3vg0uH8RyddGaIcPFTt-jl4f7l7qnY7R-f7253RSOkSgWXRNlWgaUdlxUztpKis8Ct7KyswUIprShBdEYay0GIrmkYAdrUpq2I5Vt0tdrmH_KVMelXv4Qpb9SMKcZrVpciq-iqaoKPMUCn5-BGE941Jfo7cL0GrnPg-jtwXWeGrUzM2qmH8Of8P_QFMmKH8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262392974</pqid></control><display><type>article</type><title>Optimization of operator allocation in a large multi product assembly shop through unique integration of simulation and genetic algorithm</title><source>Springer Nature - Complete Springer Journals</source><creator>Azadeh, A. ; Asadzadeh, S. M. ; Tadayoun, S.</creator><creatorcontrib>Azadeh, A. ; Asadzadeh, S. M. ; Tadayoun, S.</creatorcontrib><description>This study presents an integrated simulation and genetic algorithm (GA) for optimum operator allocation in a large multi product assembly shop. At first, simulation is used as an exquisite tool for modeling and analyzing the true performance of the system. Then, GA is used to maximize throughput of the system. In other words, optimal number of operators is found using GA such that the throughput is maximized. It is shown that the integrated GA-simulation approach yields considerable savings and benefits. The focus of the GA-simulation approach is on complex problem settings where there is random stochastic variability in the modeling environment. The results of this study show that the integrated GA-simulation is ideal for problems with several numbers of parameters and variables, and complex objective function. This is the first study that integrates GA and simulation for optimum allocation of operators in multi product assembly shops.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-014-6213-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Assembly ; CAE) and Design ; Complex variables ; Computer simulation ; Computer-Aided Engineering (CAD ; Engineering ; Environment models ; Genetic algorithms ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Operators ; Optimization ; Original Article ; Product design ; Simulation</subject><ispartof>International journal of advanced manufacturing technology, 2015-01, Vol.76 (1-4), p.471-486</ispartof><rights>Springer-Verlag London 2014</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-3506bd6eb1f3582ab854fbe3b5fb59ebe75b47e4fa5ab3e44fcc20e1c9ad80b3</citedby><cites>FETCH-LOGICAL-c456t-3506bd6eb1f3582ab854fbe3b5fb59ebe75b47e4fa5ab3e44fcc20e1c9ad80b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-014-6213-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-014-6213-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Azadeh, A.</creatorcontrib><creatorcontrib>Asadzadeh, S. M.</creatorcontrib><creatorcontrib>Tadayoun, S.</creatorcontrib><title>Optimization of operator allocation in a large multi product assembly shop through unique integration of simulation and genetic algorithm</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>This study presents an integrated simulation and genetic algorithm (GA) for optimum operator allocation in a large multi product assembly shop. At first, simulation is used as an exquisite tool for modeling and analyzing the true performance of the system. Then, GA is used to maximize throughput of the system. In other words, optimal number of operators is found using GA such that the throughput is maximized. It is shown that the integrated GA-simulation approach yields considerable savings and benefits. The focus of the GA-simulation approach is on complex problem settings where there is random stochastic variability in the modeling environment. The results of this study show that the integrated GA-simulation is ideal for problems with several numbers of parameters and variables, and complex objective function. This is the first study that integrates GA and simulation for optimum allocation of operators in multi product assembly shops.</description><subject>Assembly</subject><subject>CAE) and Design</subject><subject>Complex variables</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Environment models</subject><subject>Genetic algorithms</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Operators</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Product design</subject><subject>Simulation</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1KxTAQhYMoeL36AO4Crqv5b7sU8Q8u3I37kLTT3kjb1CRd6Bv41kYqunI1zHC-MzMHoUtKrikh5U0khJakIFQUilFe1EdoQwXnBSdUHqMNYaoqeKmqU3QW42tWK6qqDfrcz8mN7sMk5yfsO-xnCCb5gM0w-GYduwkbPJjQAx6XITk8B98uTcImRhjt8I7jwc84HYJf-gNeJve2QKYS9OHXOLrMrp2ZWtzDBMk1eU3vg0uH8RyddGaIcPFTt-jl4f7l7qnY7R-f7253RSOkSgWXRNlWgaUdlxUztpKis8Ct7KyswUIprShBdEYay0GIrmkYAdrUpq2I5Vt0tdrmH_KVMelXv4Qpb9SMKcZrVpciq-iqaoKPMUCn5-BGE941Jfo7cL0GrnPg-jtwXWeGrUzM2qmH8Of8P_QFMmKH8Q</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Azadeh, A.</creator><creator>Asadzadeh, S. M.</creator><creator>Tadayoun, S.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150101</creationdate><title>Optimization of operator allocation in a large multi product assembly shop through unique integration of simulation and genetic algorithm</title><author>Azadeh, A. ; Asadzadeh, S. M. ; Tadayoun, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-3506bd6eb1f3582ab854fbe3b5fb59ebe75b47e4fa5ab3e44fcc20e1c9ad80b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Assembly</topic><topic>CAE) and Design</topic><topic>Complex variables</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Environment models</topic><topic>Genetic algorithms</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Operators</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Product design</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azadeh, A.</creatorcontrib><creatorcontrib>Asadzadeh, S. M.</creatorcontrib><creatorcontrib>Tadayoun, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azadeh, A.</au><au>Asadzadeh, S. M.</au><au>Tadayoun, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of operator allocation in a large multi product assembly shop through unique integration of simulation and genetic algorithm</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>76</volume><issue>1-4</issue><spage>471</spage><epage>486</epage><pages>471-486</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This study presents an integrated simulation and genetic algorithm (GA) for optimum operator allocation in a large multi product assembly shop. At first, simulation is used as an exquisite tool for modeling and analyzing the true performance of the system. Then, GA is used to maximize throughput of the system. In other words, optimal number of operators is found using GA such that the throughput is maximized. It is shown that the integrated GA-simulation approach yields considerable savings and benefits. The focus of the GA-simulation approach is on complex problem settings where there is random stochastic variability in the modeling environment. The results of this study show that the integrated GA-simulation is ideal for problems with several numbers of parameters and variables, and complex objective function. This is the first study that integrates GA and simulation for optimum allocation of operators in multi product assembly shops.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-014-6213-9</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2015-01, Vol.76 (1-4), p.471-486
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262392974
source Springer Nature - Complete Springer Journals
subjects Assembly
CAE) and Design
Complex variables
Computer simulation
Computer-Aided Engineering (CAD
Engineering
Environment models
Genetic algorithms
Industrial and Production Engineering
Mechanical Engineering
Media Management
Operators
Optimization
Original Article
Product design
Simulation
title Optimization of operator allocation in a large multi product assembly shop through unique integration of simulation and genetic algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20operator%20allocation%20in%20a%20large%20multi%20product%20assembly%20shop%20through%20unique%20integration%20of%20simulation%20and%20genetic%20algorithm&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Azadeh,%20A.&rft.date=2015-01-01&rft.volume=76&rft.issue=1-4&rft.spage=471&rft.epage=486&rft.pages=471-486&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-014-6213-9&rft_dat=%3Cproquest_cross%3E2262392974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262392974&rft_id=info:pmid/&rfr_iscdi=true