Optimization of operator allocation in a large multi product assembly shop through unique integration of simulation and genetic algorithm
This study presents an integrated simulation and genetic algorithm (GA) for optimum operator allocation in a large multi product assembly shop. At first, simulation is used as an exquisite tool for modeling and analyzing the true performance of the system. Then, GA is used to maximize throughput of...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2015-01, Vol.76 (1-4), p.471-486 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 486 |
---|---|
container_issue | 1-4 |
container_start_page | 471 |
container_title | International journal of advanced manufacturing technology |
container_volume | 76 |
creator | Azadeh, A. Asadzadeh, S. M. Tadayoun, S. |
description | This study presents an integrated simulation and genetic algorithm (GA) for optimum operator allocation in a large multi product assembly shop. At first, simulation is used as an exquisite tool for modeling and analyzing the true performance of the system. Then, GA is used to maximize throughput of the system. In other words, optimal number of operators is found using GA such that the throughput is maximized. It is shown that the integrated GA-simulation approach yields considerable savings and benefits. The focus of the GA-simulation approach is on complex problem settings where there is random stochastic variability in the modeling environment. The results of this study show that the integrated GA-simulation is ideal for problems with several numbers of parameters and variables, and complex objective function. This is the first study that integrates GA and simulation for optimum allocation of operators in multi product assembly shops. |
doi_str_mv | 10.1007/s00170-014-6213-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262392974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262392974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-3506bd6eb1f3582ab854fbe3b5fb59ebe75b47e4fa5ab3e44fcc20e1c9ad80b3</originalsourceid><addsrcrecordid>eNp1kM1KxTAQhYMoeL36AO4Crqv5b7sU8Q8u3I37kLTT3kjb1CRd6Bv41kYqunI1zHC-MzMHoUtKrikh5U0khJakIFQUilFe1EdoQwXnBSdUHqMNYaoqeKmqU3QW42tWK6qqDfrcz8mN7sMk5yfsO-xnCCb5gM0w-GYduwkbPJjQAx6XITk8B98uTcImRhjt8I7jwc84HYJf-gNeJve2QKYS9OHXOLrMrp2ZWtzDBMk1eU3vg0uH8RyddGaIcPFTt-jl4f7l7qnY7R-f7253RSOkSgWXRNlWgaUdlxUztpKis8Ct7KyswUIprShBdEYay0GIrmkYAdrUpq2I5Vt0tdrmH_KVMelXv4Qpb9SMKcZrVpciq-iqaoKPMUCn5-BGE941Jfo7cL0GrnPg-jtwXWeGrUzM2qmH8Of8P_QFMmKH8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262392974</pqid></control><display><type>article</type><title>Optimization of operator allocation in a large multi product assembly shop through unique integration of simulation and genetic algorithm</title><source>Springer Nature - Complete Springer Journals</source><creator>Azadeh, A. ; Asadzadeh, S. M. ; Tadayoun, S.</creator><creatorcontrib>Azadeh, A. ; Asadzadeh, S. M. ; Tadayoun, S.</creatorcontrib><description>This study presents an integrated simulation and genetic algorithm (GA) for optimum operator allocation in a large multi product assembly shop. At first, simulation is used as an exquisite tool for modeling and analyzing the true performance of the system. Then, GA is used to maximize throughput of the system. In other words, optimal number of operators is found using GA such that the throughput is maximized. It is shown that the integrated GA-simulation approach yields considerable savings and benefits. The focus of the GA-simulation approach is on complex problem settings where there is random stochastic variability in the modeling environment. The results of this study show that the integrated GA-simulation is ideal for problems with several numbers of parameters and variables, and complex objective function. This is the first study that integrates GA and simulation for optimum allocation of operators in multi product assembly shops.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-014-6213-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Assembly ; CAE) and Design ; Complex variables ; Computer simulation ; Computer-Aided Engineering (CAD ; Engineering ; Environment models ; Genetic algorithms ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Operators ; Optimization ; Original Article ; Product design ; Simulation</subject><ispartof>International journal of advanced manufacturing technology, 2015-01, Vol.76 (1-4), p.471-486</ispartof><rights>Springer-Verlag London 2014</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-3506bd6eb1f3582ab854fbe3b5fb59ebe75b47e4fa5ab3e44fcc20e1c9ad80b3</citedby><cites>FETCH-LOGICAL-c456t-3506bd6eb1f3582ab854fbe3b5fb59ebe75b47e4fa5ab3e44fcc20e1c9ad80b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-014-6213-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-014-6213-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Azadeh, A.</creatorcontrib><creatorcontrib>Asadzadeh, S. M.</creatorcontrib><creatorcontrib>Tadayoun, S.</creatorcontrib><title>Optimization of operator allocation in a large multi product assembly shop through unique integration of simulation and genetic algorithm</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>This study presents an integrated simulation and genetic algorithm (GA) for optimum operator allocation in a large multi product assembly shop. At first, simulation is used as an exquisite tool for modeling and analyzing the true performance of the system. Then, GA is used to maximize throughput of the system. In other words, optimal number of operators is found using GA such that the throughput is maximized. It is shown that the integrated GA-simulation approach yields considerable savings and benefits. The focus of the GA-simulation approach is on complex problem settings where there is random stochastic variability in the modeling environment. The results of this study show that the integrated GA-simulation is ideal for problems with several numbers of parameters and variables, and complex objective function. This is the first study that integrates GA and simulation for optimum allocation of operators in multi product assembly shops.</description><subject>Assembly</subject><subject>CAE) and Design</subject><subject>Complex variables</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Environment models</subject><subject>Genetic algorithms</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Operators</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Product design</subject><subject>Simulation</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1KxTAQhYMoeL36AO4Crqv5b7sU8Q8u3I37kLTT3kjb1CRd6Bv41kYqunI1zHC-MzMHoUtKrikh5U0khJakIFQUilFe1EdoQwXnBSdUHqMNYaoqeKmqU3QW42tWK6qqDfrcz8mN7sMk5yfsO-xnCCb5gM0w-GYduwkbPJjQAx6XITk8B98uTcImRhjt8I7jwc84HYJf-gNeJve2QKYS9OHXOLrMrp2ZWtzDBMk1eU3vg0uH8RyddGaIcPFTt-jl4f7l7qnY7R-f7253RSOkSgWXRNlWgaUdlxUztpKis8Ct7KyswUIprShBdEYay0GIrmkYAdrUpq2I5Vt0tdrmH_KVMelXv4Qpb9SMKcZrVpciq-iqaoKPMUCn5-BGE941Jfo7cL0GrnPg-jtwXWeGrUzM2qmH8Of8P_QFMmKH8Q</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Azadeh, A.</creator><creator>Asadzadeh, S. M.</creator><creator>Tadayoun, S.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150101</creationdate><title>Optimization of operator allocation in a large multi product assembly shop through unique integration of simulation and genetic algorithm</title><author>Azadeh, A. ; Asadzadeh, S. M. ; Tadayoun, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-3506bd6eb1f3582ab854fbe3b5fb59ebe75b47e4fa5ab3e44fcc20e1c9ad80b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Assembly</topic><topic>CAE) and Design</topic><topic>Complex variables</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Environment models</topic><topic>Genetic algorithms</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Operators</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Product design</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azadeh, A.</creatorcontrib><creatorcontrib>Asadzadeh, S. M.</creatorcontrib><creatorcontrib>Tadayoun, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azadeh, A.</au><au>Asadzadeh, S. M.</au><au>Tadayoun, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of operator allocation in a large multi product assembly shop through unique integration of simulation and genetic algorithm</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>76</volume><issue>1-4</issue><spage>471</spage><epage>486</epage><pages>471-486</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This study presents an integrated simulation and genetic algorithm (GA) for optimum operator allocation in a large multi product assembly shop. At first, simulation is used as an exquisite tool for modeling and analyzing the true performance of the system. Then, GA is used to maximize throughput of the system. In other words, optimal number of operators is found using GA such that the throughput is maximized. It is shown that the integrated GA-simulation approach yields considerable savings and benefits. The focus of the GA-simulation approach is on complex problem settings where there is random stochastic variability in the modeling environment. The results of this study show that the integrated GA-simulation is ideal for problems with several numbers of parameters and variables, and complex objective function. This is the first study that integrates GA and simulation for optimum allocation of operators in multi product assembly shops.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-014-6213-9</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2015-01, Vol.76 (1-4), p.471-486 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2262392974 |
source | Springer Nature - Complete Springer Journals |
subjects | Assembly CAE) and Design Complex variables Computer simulation Computer-Aided Engineering (CAD Engineering Environment models Genetic algorithms Industrial and Production Engineering Mechanical Engineering Media Management Operators Optimization Original Article Product design Simulation |
title | Optimization of operator allocation in a large multi product assembly shop through unique integration of simulation and genetic algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20operator%20allocation%20in%20a%20large%20multi%20product%20assembly%20shop%20through%20unique%20integration%20of%20simulation%20and%20genetic%20algorithm&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Azadeh,%20A.&rft.date=2015-01-01&rft.volume=76&rft.issue=1-4&rft.spage=471&rft.epage=486&rft.pages=471-486&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-014-6213-9&rft_dat=%3Cproquest_cross%3E2262392974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262392974&rft_id=info:pmid/&rfr_iscdi=true |