A fuzzy reinforcement learning algorithm for inventory control in supply chains
In the real world, applications with very large state and action spaces and unknown state transition probability, classical reinforcement learning algorithms usually show poor performance. One way to address the performance problem is to approximate the policy or value function. Fuzzy rule-based sys...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2013-03, Vol.65 (1-4), p.557-569 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 569 |
---|---|
container_issue | 1-4 |
container_start_page | 557 |
container_title | International journal of advanced manufacturing technology |
container_volume | 65 |
creator | Zarandi, Mohammad Hossein Fazel Moosavi, Seyed Vahid Zarinbal, Marzieh |
description | In the real world, applications with very large state and action spaces and unknown state transition probability, classical reinforcement learning algorithms usually show poor performance. One way to address the performance problem is to approximate the policy or value function. Fuzzy rule-based systems are amongst the well-known function approximators. This paper presents a Flexible Fuzzy Reinforcement Learning algorithm, in which value function is approximated by a fuzzy rule-based system. The proposed algorithm has a separate module for tuning the structure of fuzzy rules. Moreover, the parameters of the system are tuned during the learning phase. Next, the proposed algorithm is applied to the problem of inventory control in supply chains. In this problem, a fuzzy agent (supplier) should determine the amount of orders for each retailer based on their utility for supplier, by considering its limited supply capacity. Finally, a simulation is performed to show the capability of the proposed algorithm. |
doi_str_mv | 10.1007/s00170-012-4195-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262376297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262376297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6da938a1abf40a29169d4687483380ad8919d8602bd7dc552a2cc19b09eda08d3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAczST7GaTYyn-g0Iveg7pJttu2SZrsit0P70pFTx5Gnjz3hvmh9A90EegtHpKlEJFCQVGClAlmS7QDArOCadQXqIZZUISXgl5jW5S2me3ACFnaL3AzThNRxxd65sQa3dwfsCdM9G3fotNtw2xHXYHnJe49d95G-IR18EPMXRZwWns-y4rO9P6dIuuGtMld_c75-jz5flj-UZW69f35WJFag5iIMIaxaUBs2kKapgCoWwhZFVIziU1VipQVgrKNraydVkyw-oa1IYqZw2Vls_Rw7m3j-FrdGnQ-zBGn09qxgTLnzJVZRecXXUMKUXX6D62BxOPGqg-cdNnbjpz0yduesoZds6k7PVbF_-a_w_9AJGvcWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262376297</pqid></control><display><type>article</type><title>A fuzzy reinforcement learning algorithm for inventory control in supply chains</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zarandi, Mohammad Hossein Fazel ; Moosavi, Seyed Vahid ; Zarinbal, Marzieh</creator><creatorcontrib>Zarandi, Mohammad Hossein Fazel ; Moosavi, Seyed Vahid ; Zarinbal, Marzieh</creatorcontrib><description>In the real world, applications with very large state and action spaces and unknown state transition probability, classical reinforcement learning algorithms usually show poor performance. One way to address the performance problem is to approximate the policy or value function. Fuzzy rule-based systems are amongst the well-known function approximators. This paper presents a Flexible Fuzzy Reinforcement Learning algorithm, in which value function is approximated by a fuzzy rule-based system. The proposed algorithm has a separate module for tuning the structure of fuzzy rules. Moreover, the parameters of the system are tuned during the learning phase. Next, the proposed algorithm is applied to the problem of inventory control in supply chains. In this problem, a fuzzy agent (supplier) should determine the amount of orders for each retailer based on their utility for supplier, by considering its limited supply capacity. Finally, a simulation is performed to show the capability of the proposed algorithm.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-012-4195-z</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>Algorithms ; CAE) and Design ; Computer simulation ; Computer-Aided Engineering (CAD ; Engineering ; Fuzzy systems ; Industrial and Production Engineering ; Inventory ; Inventory control ; Machine learning ; Mechanical Engineering ; Media Management ; Original Article ; Suppliers ; Supply chains ; Transition probabilities</subject><ispartof>International journal of advanced manufacturing technology, 2013-03, Vol.65 (1-4), p.557-569</ispartof><rights>Springer-Verlag London Limited 2012</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6da938a1abf40a29169d4687483380ad8919d8602bd7dc552a2cc19b09eda08d3</citedby><cites>FETCH-LOGICAL-c316t-6da938a1abf40a29169d4687483380ad8919d8602bd7dc552a2cc19b09eda08d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-012-4195-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-012-4195-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zarandi, Mohammad Hossein Fazel</creatorcontrib><creatorcontrib>Moosavi, Seyed Vahid</creatorcontrib><creatorcontrib>Zarinbal, Marzieh</creatorcontrib><title>A fuzzy reinforcement learning algorithm for inventory control in supply chains</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>In the real world, applications with very large state and action spaces and unknown state transition probability, classical reinforcement learning algorithms usually show poor performance. One way to address the performance problem is to approximate the policy or value function. Fuzzy rule-based systems are amongst the well-known function approximators. This paper presents a Flexible Fuzzy Reinforcement Learning algorithm, in which value function is approximated by a fuzzy rule-based system. The proposed algorithm has a separate module for tuning the structure of fuzzy rules. Moreover, the parameters of the system are tuned during the learning phase. Next, the proposed algorithm is applied to the problem of inventory control in supply chains. In this problem, a fuzzy agent (supplier) should determine the amount of orders for each retailer based on their utility for supplier, by considering its limited supply capacity. Finally, a simulation is performed to show the capability of the proposed algorithm.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Fuzzy systems</subject><subject>Industrial and Production Engineering</subject><subject>Inventory</subject><subject>Inventory control</subject><subject>Machine learning</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Suppliers</subject><subject>Supply chains</subject><subject>Transition probabilities</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwFvAczST7GaTYyn-g0Iveg7pJttu2SZrsit0P70pFTx5Gnjz3hvmh9A90EegtHpKlEJFCQVGClAlmS7QDArOCadQXqIZZUISXgl5jW5S2me3ACFnaL3AzThNRxxd65sQa3dwfsCdM9G3fotNtw2xHXYHnJe49d95G-IR18EPMXRZwWns-y4rO9P6dIuuGtMld_c75-jz5flj-UZW69f35WJFag5iIMIaxaUBs2kKapgCoWwhZFVIziU1VipQVgrKNraydVkyw-oa1IYqZw2Vls_Rw7m3j-FrdGnQ-zBGn09qxgTLnzJVZRecXXUMKUXX6D62BxOPGqg-cdNnbjpz0yduesoZds6k7PVbF_-a_w_9AJGvcWI</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Zarandi, Mohammad Hossein Fazel</creator><creator>Moosavi, Seyed Vahid</creator><creator>Zarinbal, Marzieh</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130301</creationdate><title>A fuzzy reinforcement learning algorithm for inventory control in supply chains</title><author>Zarandi, Mohammad Hossein Fazel ; Moosavi, Seyed Vahid ; Zarinbal, Marzieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6da938a1abf40a29169d4687483380ad8919d8602bd7dc552a2cc19b09eda08d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Fuzzy systems</topic><topic>Industrial and Production Engineering</topic><topic>Inventory</topic><topic>Inventory control</topic><topic>Machine learning</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Suppliers</topic><topic>Supply chains</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zarandi, Mohammad Hossein Fazel</creatorcontrib><creatorcontrib>Moosavi, Seyed Vahid</creatorcontrib><creatorcontrib>Zarinbal, Marzieh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zarandi, Mohammad Hossein Fazel</au><au>Moosavi, Seyed Vahid</au><au>Zarinbal, Marzieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fuzzy reinforcement learning algorithm for inventory control in supply chains</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>65</volume><issue>1-4</issue><spage>557</spage><epage>569</epage><pages>557-569</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In the real world, applications with very large state and action spaces and unknown state transition probability, classical reinforcement learning algorithms usually show poor performance. One way to address the performance problem is to approximate the policy or value function. Fuzzy rule-based systems are amongst the well-known function approximators. This paper presents a Flexible Fuzzy Reinforcement Learning algorithm, in which value function is approximated by a fuzzy rule-based system. The proposed algorithm has a separate module for tuning the structure of fuzzy rules. Moreover, the parameters of the system are tuned during the learning phase. Next, the proposed algorithm is applied to the problem of inventory control in supply chains. In this problem, a fuzzy agent (supplier) should determine the amount of orders for each retailer based on their utility for supplier, by considering its limited supply capacity. Finally, a simulation is performed to show the capability of the proposed algorithm.</abstract><cop>London</cop><pub>Springer-Verlag</pub><doi>10.1007/s00170-012-4195-z</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2013-03, Vol.65 (1-4), p.557-569 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2262376297 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms CAE) and Design Computer simulation Computer-Aided Engineering (CAD Engineering Fuzzy systems Industrial and Production Engineering Inventory Inventory control Machine learning Mechanical Engineering Media Management Original Article Suppliers Supply chains Transition probabilities |
title | A fuzzy reinforcement learning algorithm for inventory control in supply chains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fuzzy%20reinforcement%20learning%20algorithm%20for%20inventory%20control%20in%20supply%20chains&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Zarandi,%20Mohammad%20Hossein%20Fazel&rft.date=2013-03-01&rft.volume=65&rft.issue=1-4&rft.spage=557&rft.epage=569&rft.pages=557-569&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-012-4195-z&rft_dat=%3Cproquest_cross%3E2262376297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262376297&rft_id=info:pmid/&rfr_iscdi=true |