Thermal–structural analysis of bi-metallic conformal cooling for injection moulds
In injection moulding process, cooling time greatly affects the total cycle time. As thermal conductivity is one of the main factors for conductive heat transfer in cooling phase of IMP, a cooling channel made by higher thermal conductive material will allow faster extraction of heat from the molten...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2012-09, Vol.62 (1-4), p.123-133 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 133 |
---|---|
container_issue | 1-4 |
container_start_page | 123 |
container_title | International journal of advanced manufacturing technology |
container_volume | 62 |
creator | Saifullah, A. B. M. Masood, S. H. Sbarski, I. |
description | In injection moulding process, cooling time greatly affects the total cycle time. As thermal conductivity is one of the main factors for conductive heat transfer in cooling phase of IMP, a cooling channel made by higher thermal conductive material will allow faster extraction of heat from the molten plastic materials, thus resulting in shorter cycle time and higher productivity. The main objective of this paper is to investigate bi-metallic conformal cooling channel design with high thermal conductive copper tube insert for injection moulds. Thermal–structural finite element analysis has been carried out with ANSYS workbench simulation software for a mould with bi-metallic conformal cooling channels and the performance is compared with a mould with conventional straight cooling channels for an industrial plastic part. Experimental verification has been carried out for the two moulds using two different types of plastics, polypropylene (PP) and acrylonitrile butadiene styrene, in a mini injection moulding machine. Simulation and experimental results show that bi-metallic conformal cooling channel design gives better cycle time, which ultimately increases production rate as well as fatigue life of the mould. |
doi_str_mv | 10.1007/s00170-011-3805-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262373780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262373780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-915a6a86633df082fe54c14b5d19984a4895969ec1e4d666981080f5a79634213</originalsourceid><addsrcrecordid>eNp1kM9KxDAQh4MouK4-gLeC5-hM06TJURb_geDB9Ryyabp2SZs1aQ978x18Q5_ELCt48jQz8P1-DB8hlwjXCFDfJACsgQIiZRI45UdkhhVjlAHyYzKDUkjKaiFPyVlKm0wLFHJGXpfvLvbGf39-pTFOdpyi8YUZjN-lLhWhLVYd7d1ovO9sYcPQhj2et-C7YV3ks-iGjbNjF4aiD5Nv0jk5aY1P7uJ3zsnb_d1y8UifXx6eFrfP1DIUI1XIjTBSCMaaFmTZOl5ZrFa8QaVkZSqpuBLKWXRVI4RQEkFCy02tBKtKZHNydejdxvAxuTTqTZhifj3pshQlq1ktIVN4oGwMKUXX6m3sehN3GkHv3emDO53d6b07zXOmPGRSZoe1i3_N_4d-AKZ2cbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262373780</pqid></control><display><type>article</type><title>Thermal–structural analysis of bi-metallic conformal cooling for injection moulds</title><source>SpringerNature Journals</source><creator>Saifullah, A. B. M. ; Masood, S. H. ; Sbarski, I.</creator><creatorcontrib>Saifullah, A. B. M. ; Masood, S. H. ; Sbarski, I.</creatorcontrib><description>In injection moulding process, cooling time greatly affects the total cycle time. As thermal conductivity is one of the main factors for conductive heat transfer in cooling phase of IMP, a cooling channel made by higher thermal conductive material will allow faster extraction of heat from the molten plastic materials, thus resulting in shorter cycle time and higher productivity. The main objective of this paper is to investigate bi-metallic conformal cooling channel design with high thermal conductive copper tube insert for injection moulds. Thermal–structural finite element analysis has been carried out with ANSYS workbench simulation software for a mould with bi-metallic conformal cooling channels and the performance is compared with a mould with conventional straight cooling channels for an industrial plastic part. Experimental verification has been carried out for the two moulds using two different types of plastics, polypropylene (PP) and acrylonitrile butadiene styrene, in a mini injection moulding machine. Simulation and experimental results show that bi-metallic conformal cooling channel design gives better cycle time, which ultimately increases production rate as well as fatigue life of the mould.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-011-3805-5</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>ABS resins ; Acrylonitrile butadiene styrene ; CAD ; CAE) and Design ; Channels ; Computer aided design ; Computer-Aided Engineering (CAD ; Conductive heat transfer ; Cooling ; Cooling rate ; Cycle time ; Engineering ; Fatigue life ; Finite element method ; Industrial and Production Engineering ; Injection molding ; Injection molding machines ; Mechanical Engineering ; Media Management ; Molds ; Original Article ; Polymers ; Structural analysis ; Thermal conductivity</subject><ispartof>International journal of advanced manufacturing technology, 2012-09, Vol.62 (1-4), p.123-133</ispartof><rights>Springer-Verlag London Limited 2011</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-915a6a86633df082fe54c14b5d19984a4895969ec1e4d666981080f5a79634213</citedby><cites>FETCH-LOGICAL-c316t-915a6a86633df082fe54c14b5d19984a4895969ec1e4d666981080f5a79634213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-011-3805-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-011-3805-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Saifullah, A. B. M.</creatorcontrib><creatorcontrib>Masood, S. H.</creatorcontrib><creatorcontrib>Sbarski, I.</creatorcontrib><title>Thermal–structural analysis of bi-metallic conformal cooling for injection moulds</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>In injection moulding process, cooling time greatly affects the total cycle time. As thermal conductivity is one of the main factors for conductive heat transfer in cooling phase of IMP, a cooling channel made by higher thermal conductive material will allow faster extraction of heat from the molten plastic materials, thus resulting in shorter cycle time and higher productivity. The main objective of this paper is to investigate bi-metallic conformal cooling channel design with high thermal conductive copper tube insert for injection moulds. Thermal–structural finite element analysis has been carried out with ANSYS workbench simulation software for a mould with bi-metallic conformal cooling channels and the performance is compared with a mould with conventional straight cooling channels for an industrial plastic part. Experimental verification has been carried out for the two moulds using two different types of plastics, polypropylene (PP) and acrylonitrile butadiene styrene, in a mini injection moulding machine. Simulation and experimental results show that bi-metallic conformal cooling channel design gives better cycle time, which ultimately increases production rate as well as fatigue life of the mould.</description><subject>ABS resins</subject><subject>Acrylonitrile butadiene styrene</subject><subject>CAD</subject><subject>CAE) and Design</subject><subject>Channels</subject><subject>Computer aided design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Conductive heat transfer</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Cycle time</subject><subject>Engineering</subject><subject>Fatigue life</subject><subject>Finite element method</subject><subject>Industrial and Production Engineering</subject><subject>Injection molding</subject><subject>Injection molding machines</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Molds</subject><subject>Original Article</subject><subject>Polymers</subject><subject>Structural analysis</subject><subject>Thermal conductivity</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM9KxDAQh4MouK4-gLeC5-hM06TJURb_geDB9Ryyabp2SZs1aQ978x18Q5_ELCt48jQz8P1-DB8hlwjXCFDfJACsgQIiZRI45UdkhhVjlAHyYzKDUkjKaiFPyVlKm0wLFHJGXpfvLvbGf39-pTFOdpyi8YUZjN-lLhWhLVYd7d1ovO9sYcPQhj2et-C7YV3ks-iGjbNjF4aiD5Nv0jk5aY1P7uJ3zsnb_d1y8UifXx6eFrfP1DIUI1XIjTBSCMaaFmTZOl5ZrFa8QaVkZSqpuBLKWXRVI4RQEkFCy02tBKtKZHNydejdxvAxuTTqTZhifj3pshQlq1ktIVN4oGwMKUXX6m3sehN3GkHv3emDO53d6b07zXOmPGRSZoe1i3_N_4d-AKZ2cbg</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Saifullah, A. B. M.</creator><creator>Masood, S. H.</creator><creator>Sbarski, I.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120901</creationdate><title>Thermal–structural analysis of bi-metallic conformal cooling for injection moulds</title><author>Saifullah, A. B. M. ; Masood, S. H. ; Sbarski, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-915a6a86633df082fe54c14b5d19984a4895969ec1e4d666981080f5a79634213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ABS resins</topic><topic>Acrylonitrile butadiene styrene</topic><topic>CAD</topic><topic>CAE) and Design</topic><topic>Channels</topic><topic>Computer aided design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Conductive heat transfer</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Cycle time</topic><topic>Engineering</topic><topic>Fatigue life</topic><topic>Finite element method</topic><topic>Industrial and Production Engineering</topic><topic>Injection molding</topic><topic>Injection molding machines</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Molds</topic><topic>Original Article</topic><topic>Polymers</topic><topic>Structural analysis</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saifullah, A. B. M.</creatorcontrib><creatorcontrib>Masood, S. H.</creatorcontrib><creatorcontrib>Sbarski, I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saifullah, A. B. M.</au><au>Masood, S. H.</au><au>Sbarski, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal–structural analysis of bi-metallic conformal cooling for injection moulds</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>62</volume><issue>1-4</issue><spage>123</spage><epage>133</epage><pages>123-133</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In injection moulding process, cooling time greatly affects the total cycle time. As thermal conductivity is one of the main factors for conductive heat transfer in cooling phase of IMP, a cooling channel made by higher thermal conductive material will allow faster extraction of heat from the molten plastic materials, thus resulting in shorter cycle time and higher productivity. The main objective of this paper is to investigate bi-metallic conformal cooling channel design with high thermal conductive copper tube insert for injection moulds. Thermal–structural finite element analysis has been carried out with ANSYS workbench simulation software for a mould with bi-metallic conformal cooling channels and the performance is compared with a mould with conventional straight cooling channels for an industrial plastic part. Experimental verification has been carried out for the two moulds using two different types of plastics, polypropylene (PP) and acrylonitrile butadiene styrene, in a mini injection moulding machine. Simulation and experimental results show that bi-metallic conformal cooling channel design gives better cycle time, which ultimately increases production rate as well as fatigue life of the mould.</abstract><cop>London</cop><pub>Springer-Verlag</pub><doi>10.1007/s00170-011-3805-5</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2012-09, Vol.62 (1-4), p.123-133 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2262373780 |
source | SpringerNature Journals |
subjects | ABS resins Acrylonitrile butadiene styrene CAD CAE) and Design Channels Computer aided design Computer-Aided Engineering (CAD Conductive heat transfer Cooling Cooling rate Cycle time Engineering Fatigue life Finite element method Industrial and Production Engineering Injection molding Injection molding machines Mechanical Engineering Media Management Molds Original Article Polymers Structural analysis Thermal conductivity |
title | Thermal–structural analysis of bi-metallic conformal cooling for injection moulds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%E2%80%93structural%20analysis%20of%20bi-metallic%20conformal%20cooling%20for%20injection%20moulds&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Saifullah,%20A.%20B.%20M.&rft.date=2012-09-01&rft.volume=62&rft.issue=1-4&rft.spage=123&rft.epage=133&rft.pages=123-133&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-011-3805-5&rft_dat=%3Cproquest_cross%3E2262373780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262373780&rft_id=info:pmid/&rfr_iscdi=true |