Thermal–structural analysis of bi-metallic conformal cooling for injection moulds

In injection moulding process, cooling time greatly affects the total cycle time. As thermal conductivity is one of the main factors for conductive heat transfer in cooling phase of IMP, a cooling channel made by higher thermal conductive material will allow faster extraction of heat from the molten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2012-09, Vol.62 (1-4), p.123-133
Hauptverfasser: Saifullah, A. B. M., Masood, S. H., Sbarski, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 1-4
container_start_page 123
container_title International journal of advanced manufacturing technology
container_volume 62
creator Saifullah, A. B. M.
Masood, S. H.
Sbarski, I.
description In injection moulding process, cooling time greatly affects the total cycle time. As thermal conductivity is one of the main factors for conductive heat transfer in cooling phase of IMP, a cooling channel made by higher thermal conductive material will allow faster extraction of heat from the molten plastic materials, thus resulting in shorter cycle time and higher productivity. The main objective of this paper is to investigate bi-metallic conformal cooling channel design with high thermal conductive copper tube insert for injection moulds. Thermal–structural finite element analysis has been carried out with ANSYS workbench simulation software for a mould with bi-metallic conformal cooling channels and the performance is compared with a mould with conventional straight cooling channels for an industrial plastic part. Experimental verification has been carried out for the two moulds using two different types of plastics, polypropylene (PP) and acrylonitrile butadiene styrene, in a mini injection moulding machine. Simulation and experimental results show that bi-metallic conformal cooling channel design gives better cycle time, which ultimately increases production rate as well as fatigue life of the mould.
doi_str_mv 10.1007/s00170-011-3805-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262373780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262373780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-915a6a86633df082fe54c14b5d19984a4895969ec1e4d666981080f5a79634213</originalsourceid><addsrcrecordid>eNp1kM9KxDAQh4MouK4-gLeC5-hM06TJURb_geDB9Ryyabp2SZs1aQ978x18Q5_ELCt48jQz8P1-DB8hlwjXCFDfJACsgQIiZRI45UdkhhVjlAHyYzKDUkjKaiFPyVlKm0wLFHJGXpfvLvbGf39-pTFOdpyi8YUZjN-lLhWhLVYd7d1ovO9sYcPQhj2et-C7YV3ks-iGjbNjF4aiD5Nv0jk5aY1P7uJ3zsnb_d1y8UifXx6eFrfP1DIUI1XIjTBSCMaaFmTZOl5ZrFa8QaVkZSqpuBLKWXRVI4RQEkFCy02tBKtKZHNydejdxvAxuTTqTZhifj3pshQlq1ktIVN4oGwMKUXX6m3sehN3GkHv3emDO53d6b07zXOmPGRSZoe1i3_N_4d-AKZ2cbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262373780</pqid></control><display><type>article</type><title>Thermal–structural analysis of bi-metallic conformal cooling for injection moulds</title><source>SpringerNature Journals</source><creator>Saifullah, A. B. M. ; Masood, S. H. ; Sbarski, I.</creator><creatorcontrib>Saifullah, A. B. M. ; Masood, S. H. ; Sbarski, I.</creatorcontrib><description>In injection moulding process, cooling time greatly affects the total cycle time. As thermal conductivity is one of the main factors for conductive heat transfer in cooling phase of IMP, a cooling channel made by higher thermal conductive material will allow faster extraction of heat from the molten plastic materials, thus resulting in shorter cycle time and higher productivity. The main objective of this paper is to investigate bi-metallic conformal cooling channel design with high thermal conductive copper tube insert for injection moulds. Thermal–structural finite element analysis has been carried out with ANSYS workbench simulation software for a mould with bi-metallic conformal cooling channels and the performance is compared with a mould with conventional straight cooling channels for an industrial plastic part. Experimental verification has been carried out for the two moulds using two different types of plastics, polypropylene (PP) and acrylonitrile butadiene styrene, in a mini injection moulding machine. Simulation and experimental results show that bi-metallic conformal cooling channel design gives better cycle time, which ultimately increases production rate as well as fatigue life of the mould.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-011-3805-5</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>ABS resins ; Acrylonitrile butadiene styrene ; CAD ; CAE) and Design ; Channels ; Computer aided design ; Computer-Aided Engineering (CAD ; Conductive heat transfer ; Cooling ; Cooling rate ; Cycle time ; Engineering ; Fatigue life ; Finite element method ; Industrial and Production Engineering ; Injection molding ; Injection molding machines ; Mechanical Engineering ; Media Management ; Molds ; Original Article ; Polymers ; Structural analysis ; Thermal conductivity</subject><ispartof>International journal of advanced manufacturing technology, 2012-09, Vol.62 (1-4), p.123-133</ispartof><rights>Springer-Verlag London Limited 2011</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-915a6a86633df082fe54c14b5d19984a4895969ec1e4d666981080f5a79634213</citedby><cites>FETCH-LOGICAL-c316t-915a6a86633df082fe54c14b5d19984a4895969ec1e4d666981080f5a79634213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-011-3805-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-011-3805-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Saifullah, A. B. M.</creatorcontrib><creatorcontrib>Masood, S. H.</creatorcontrib><creatorcontrib>Sbarski, I.</creatorcontrib><title>Thermal–structural analysis of bi-metallic conformal cooling for injection moulds</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>In injection moulding process, cooling time greatly affects the total cycle time. As thermal conductivity is one of the main factors for conductive heat transfer in cooling phase of IMP, a cooling channel made by higher thermal conductive material will allow faster extraction of heat from the molten plastic materials, thus resulting in shorter cycle time and higher productivity. The main objective of this paper is to investigate bi-metallic conformal cooling channel design with high thermal conductive copper tube insert for injection moulds. Thermal–structural finite element analysis has been carried out with ANSYS workbench simulation software for a mould with bi-metallic conformal cooling channels and the performance is compared with a mould with conventional straight cooling channels for an industrial plastic part. Experimental verification has been carried out for the two moulds using two different types of plastics, polypropylene (PP) and acrylonitrile butadiene styrene, in a mini injection moulding machine. Simulation and experimental results show that bi-metallic conformal cooling channel design gives better cycle time, which ultimately increases production rate as well as fatigue life of the mould.</description><subject>ABS resins</subject><subject>Acrylonitrile butadiene styrene</subject><subject>CAD</subject><subject>CAE) and Design</subject><subject>Channels</subject><subject>Computer aided design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Conductive heat transfer</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Cycle time</subject><subject>Engineering</subject><subject>Fatigue life</subject><subject>Finite element method</subject><subject>Industrial and Production Engineering</subject><subject>Injection molding</subject><subject>Injection molding machines</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Molds</subject><subject>Original Article</subject><subject>Polymers</subject><subject>Structural analysis</subject><subject>Thermal conductivity</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM9KxDAQh4MouK4-gLeC5-hM06TJURb_geDB9Ryyabp2SZs1aQ978x18Q5_ELCt48jQz8P1-DB8hlwjXCFDfJACsgQIiZRI45UdkhhVjlAHyYzKDUkjKaiFPyVlKm0wLFHJGXpfvLvbGf39-pTFOdpyi8YUZjN-lLhWhLVYd7d1ovO9sYcPQhj2et-C7YV3ks-iGjbNjF4aiD5Nv0jk5aY1P7uJ3zsnb_d1y8UifXx6eFrfP1DIUI1XIjTBSCMaaFmTZOl5ZrFa8QaVkZSqpuBLKWXRVI4RQEkFCy02tBKtKZHNydejdxvAxuTTqTZhifj3pshQlq1ktIVN4oGwMKUXX6m3sehN3GkHv3emDO53d6b07zXOmPGRSZoe1i3_N_4d-AKZ2cbg</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Saifullah, A. B. M.</creator><creator>Masood, S. H.</creator><creator>Sbarski, I.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120901</creationdate><title>Thermal–structural analysis of bi-metallic conformal cooling for injection moulds</title><author>Saifullah, A. B. M. ; Masood, S. H. ; Sbarski, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-915a6a86633df082fe54c14b5d19984a4895969ec1e4d666981080f5a79634213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ABS resins</topic><topic>Acrylonitrile butadiene styrene</topic><topic>CAD</topic><topic>CAE) and Design</topic><topic>Channels</topic><topic>Computer aided design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Conductive heat transfer</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Cycle time</topic><topic>Engineering</topic><topic>Fatigue life</topic><topic>Finite element method</topic><topic>Industrial and Production Engineering</topic><topic>Injection molding</topic><topic>Injection molding machines</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Molds</topic><topic>Original Article</topic><topic>Polymers</topic><topic>Structural analysis</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saifullah, A. B. M.</creatorcontrib><creatorcontrib>Masood, S. H.</creatorcontrib><creatorcontrib>Sbarski, I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saifullah, A. B. M.</au><au>Masood, S. H.</au><au>Sbarski, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal–structural analysis of bi-metallic conformal cooling for injection moulds</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>62</volume><issue>1-4</issue><spage>123</spage><epage>133</epage><pages>123-133</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In injection moulding process, cooling time greatly affects the total cycle time. As thermal conductivity is one of the main factors for conductive heat transfer in cooling phase of IMP, a cooling channel made by higher thermal conductive material will allow faster extraction of heat from the molten plastic materials, thus resulting in shorter cycle time and higher productivity. The main objective of this paper is to investigate bi-metallic conformal cooling channel design with high thermal conductive copper tube insert for injection moulds. Thermal–structural finite element analysis has been carried out with ANSYS workbench simulation software for a mould with bi-metallic conformal cooling channels and the performance is compared with a mould with conventional straight cooling channels for an industrial plastic part. Experimental verification has been carried out for the two moulds using two different types of plastics, polypropylene (PP) and acrylonitrile butadiene styrene, in a mini injection moulding machine. Simulation and experimental results show that bi-metallic conformal cooling channel design gives better cycle time, which ultimately increases production rate as well as fatigue life of the mould.</abstract><cop>London</cop><pub>Springer-Verlag</pub><doi>10.1007/s00170-011-3805-5</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2012-09, Vol.62 (1-4), p.123-133
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262373780
source SpringerNature Journals
subjects ABS resins
Acrylonitrile butadiene styrene
CAD
CAE) and Design
Channels
Computer aided design
Computer-Aided Engineering (CAD
Conductive heat transfer
Cooling
Cooling rate
Cycle time
Engineering
Fatigue life
Finite element method
Industrial and Production Engineering
Injection molding
Injection molding machines
Mechanical Engineering
Media Management
Molds
Original Article
Polymers
Structural analysis
Thermal conductivity
title Thermal–structural analysis of bi-metallic conformal cooling for injection moulds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%E2%80%93structural%20analysis%20of%20bi-metallic%20conformal%20cooling%20for%20injection%20moulds&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Saifullah,%20A.%20B.%20M.&rft.date=2012-09-01&rft.volume=62&rft.issue=1-4&rft.spage=123&rft.epage=133&rft.pages=123-133&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-011-3805-5&rft_dat=%3Cproquest_cross%3E2262373780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262373780&rft_id=info:pmid/&rfr_iscdi=true