A hybrid GA–PSO approach for reliability optimization in redundancy allocation problem

This paper presents a novel hybrid genetic algorithm (GA)-particle swarm optimization (PSO) approach for reliability redundancy allocation problem (RRAP) in series, series–parallel, and complex (bridge) systems. The proposed approach maximizes overall system reliability while minimizing system cost,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2013-09, Vol.68 (1-4), p.317-338
Hauptverfasser: Sheikhalishahi, M., Ebrahimipour, V., Shiri, H., Zaman, H., Jeihoonian, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 338
container_issue 1-4
container_start_page 317
container_title International journal of advanced manufacturing technology
container_volume 68
creator Sheikhalishahi, M.
Ebrahimipour, V.
Shiri, H.
Zaman, H.
Jeihoonian, M.
description This paper presents a novel hybrid genetic algorithm (GA)-particle swarm optimization (PSO) approach for reliability redundancy allocation problem (RRAP) in series, series–parallel, and complex (bridge) systems. The proposed approach maximizes overall system reliability while minimizing system cost, system weight and volume, simultaneously, under nonlinear constraints. To meet these objectives, an adaptive hybrid GA–PSO approach is developed to identify the optimal solutions and improve computation efficiency for these NP-hard problems. An illustrative example is applied to show the capability and effectiveness of the proposed approach. According to the results, in all three cases, reliability values are improved. Moreover, computational time and variance are decreased compared to the similar studies. The proposed approach could be helpful for engineers and managers to better understand their system reliability and performance, and also to reach a better configuration.
doi_str_mv 10.1007/s00170-013-4730-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262372500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262372500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-dfe50933d7c79bc5315ae70b0af8db4caa6827e6ae48808fcccba8c1915271863</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKsf4C7gOvqSzCTpshStQqGCCu5CJpOxKdOZMZkuxpX_4B_6JaaM4MrVW9xz74OD0CWFawogbyIAlUCAcpJJDkQcoQnNOCccaH6MJsCEIlwKdYrOYtwmWlChJuh1jjdDEXyJl_Pvz6_HpzU2XRdaYze4agMOrvam8LXvB9x2vd_5D9P7tsG-SVm5b0rT2AGbum7tGKRyUbvdOTqpTB3dxe-dope72-fFPVmtlw-L-YpYTkVPysrlMOO8lFbOCptzmhsnoQBTqbLIrDFCMemEcZlSoCprbWGUpTOaM0mV4FN0Ne6mv-97F3u9bfehSS81Y4JxyXKARNGRsqGNMbhKd8HvTBg0BX0QqEeBOgnUB4H6sMzGTkxs8-bC3_L_pR985nSl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262372500</pqid></control><display><type>article</type><title>A hybrid GA–PSO approach for reliability optimization in redundancy allocation problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sheikhalishahi, M. ; Ebrahimipour, V. ; Shiri, H. ; Zaman, H. ; Jeihoonian, M.</creator><creatorcontrib>Sheikhalishahi, M. ; Ebrahimipour, V. ; Shiri, H. ; Zaman, H. ; Jeihoonian, M.</creatorcontrib><description>This paper presents a novel hybrid genetic algorithm (GA)-particle swarm optimization (PSO) approach for reliability redundancy allocation problem (RRAP) in series, series–parallel, and complex (bridge) systems. The proposed approach maximizes overall system reliability while minimizing system cost, system weight and volume, simultaneously, under nonlinear constraints. To meet these objectives, an adaptive hybrid GA–PSO approach is developed to identify the optimal solutions and improve computation efficiency for these NP-hard problems. An illustrative example is applied to show the capability and effectiveness of the proposed approach. According to the results, in all three cases, reliability values are improved. Moreover, computational time and variance are decreased compared to the similar studies. The proposed approach could be helpful for engineers and managers to better understand their system reliability and performance, and also to reach a better configuration.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-013-4730-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Computer-Aided Engineering (CAD ; Computing time ; Engineering ; Genetic algorithms ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Original Article ; Particle swarm optimization ; Redundancy ; Reliability engineering ; System reliability</subject><ispartof>International journal of advanced manufacturing technology, 2013-09, Vol.68 (1-4), p.317-338</ispartof><rights>Springer-Verlag London 2013</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-dfe50933d7c79bc5315ae70b0af8db4caa6827e6ae48808fcccba8c1915271863</citedby><cites>FETCH-LOGICAL-c316t-dfe50933d7c79bc5315ae70b0af8db4caa6827e6ae48808fcccba8c1915271863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-013-4730-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-013-4730-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Sheikhalishahi, M.</creatorcontrib><creatorcontrib>Ebrahimipour, V.</creatorcontrib><creatorcontrib>Shiri, H.</creatorcontrib><creatorcontrib>Zaman, H.</creatorcontrib><creatorcontrib>Jeihoonian, M.</creatorcontrib><title>A hybrid GA–PSO approach for reliability optimization in redundancy allocation problem</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>This paper presents a novel hybrid genetic algorithm (GA)-particle swarm optimization (PSO) approach for reliability redundancy allocation problem (RRAP) in series, series–parallel, and complex (bridge) systems. The proposed approach maximizes overall system reliability while minimizing system cost, system weight and volume, simultaneously, under nonlinear constraints. To meet these objectives, an adaptive hybrid GA–PSO approach is developed to identify the optimal solutions and improve computation efficiency for these NP-hard problems. An illustrative example is applied to show the capability and effectiveness of the proposed approach. According to the results, in all three cases, reliability values are improved. Moreover, computational time and variance are decreased compared to the similar studies. The proposed approach could be helpful for engineers and managers to better understand their system reliability and performance, and also to reach a better configuration.</description><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Computing time</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Particle swarm optimization</subject><subject>Redundancy</subject><subject>Reliability engineering</subject><subject>System reliability</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMFKAzEURYMoWKsf4C7gOvqSzCTpshStQqGCCu5CJpOxKdOZMZkuxpX_4B_6JaaM4MrVW9xz74OD0CWFawogbyIAlUCAcpJJDkQcoQnNOCccaH6MJsCEIlwKdYrOYtwmWlChJuh1jjdDEXyJl_Pvz6_HpzU2XRdaYze4agMOrvam8LXvB9x2vd_5D9P7tsG-SVm5b0rT2AGbum7tGKRyUbvdOTqpTB3dxe-dope72-fFPVmtlw-L-YpYTkVPysrlMOO8lFbOCptzmhsnoQBTqbLIrDFCMemEcZlSoCprbWGUpTOaM0mV4FN0Ne6mv-97F3u9bfehSS81Y4JxyXKARNGRsqGNMbhKd8HvTBg0BX0QqEeBOgnUB4H6sMzGTkxs8-bC3_L_pR985nSl</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Sheikhalishahi, M.</creator><creator>Ebrahimipour, V.</creator><creator>Shiri, H.</creator><creator>Zaman, H.</creator><creator>Jeihoonian, M.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130901</creationdate><title>A hybrid GA–PSO approach for reliability optimization in redundancy allocation problem</title><author>Sheikhalishahi, M. ; Ebrahimipour, V. ; Shiri, H. ; Zaman, H. ; Jeihoonian, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-dfe50933d7c79bc5315ae70b0af8db4caa6827e6ae48808fcccba8c1915271863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Computing time</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Particle swarm optimization</topic><topic>Redundancy</topic><topic>Reliability engineering</topic><topic>System reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheikhalishahi, M.</creatorcontrib><creatorcontrib>Ebrahimipour, V.</creatorcontrib><creatorcontrib>Shiri, H.</creatorcontrib><creatorcontrib>Zaman, H.</creatorcontrib><creatorcontrib>Jeihoonian, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheikhalishahi, M.</au><au>Ebrahimipour, V.</au><au>Shiri, H.</au><au>Zaman, H.</au><au>Jeihoonian, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid GA–PSO approach for reliability optimization in redundancy allocation problem</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>68</volume><issue>1-4</issue><spage>317</spage><epage>338</epage><pages>317-338</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This paper presents a novel hybrid genetic algorithm (GA)-particle swarm optimization (PSO) approach for reliability redundancy allocation problem (RRAP) in series, series–parallel, and complex (bridge) systems. The proposed approach maximizes overall system reliability while minimizing system cost, system weight and volume, simultaneously, under nonlinear constraints. To meet these objectives, an adaptive hybrid GA–PSO approach is developed to identify the optimal solutions and improve computation efficiency for these NP-hard problems. An illustrative example is applied to show the capability and effectiveness of the proposed approach. According to the results, in all three cases, reliability values are improved. Moreover, computational time and variance are decreased compared to the similar studies. The proposed approach could be helpful for engineers and managers to better understand their system reliability and performance, and also to reach a better configuration.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-013-4730-6</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2013-09, Vol.68 (1-4), p.317-338
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262372500
source SpringerLink Journals - AutoHoldings
subjects CAE) and Design
Computer-Aided Engineering (CAD
Computing time
Engineering
Genetic algorithms
Industrial and Production Engineering
Mechanical Engineering
Media Management
Original Article
Particle swarm optimization
Redundancy
Reliability engineering
System reliability
title A hybrid GA–PSO approach for reliability optimization in redundancy allocation problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20GA%E2%80%93PSO%20approach%20for%20reliability%20optimization%20in%20redundancy%20allocation%20problem&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Sheikhalishahi,%20M.&rft.date=2013-09-01&rft.volume=68&rft.issue=1-4&rft.spage=317&rft.epage=338&rft.pages=317-338&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-013-4730-6&rft_dat=%3Cproquest_cross%3E2262372500%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262372500&rft_id=info:pmid/&rfr_iscdi=true