Study of void closure in hot radial forging process using 3D nonlinear finite element analysis

Hot radial forging is used to reduce porosity and increase strength for large-diameter billets. The goal of this research is to study void closure behavior in the hot radial forging process. A nonlinear coupled finite element model is developed to investigate the deformation mechanism of internal vo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2012-10, Vol.62 (9-12), p.1001-1011
Hauptverfasser: Chen, J., Chandrashekhara, K., Mahimkar, C., Lekakh, S. N., Richards, V. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1011
container_issue 9-12
container_start_page 1001
container_title International journal of advanced manufacturing technology
container_volume 62
creator Chen, J.
Chandrashekhara, K.
Mahimkar, C.
Lekakh, S. N.
Richards, V. L.
description Hot radial forging is used to reduce porosity and increase strength for large-diameter billets. The goal of this research is to study void closure behavior in the hot radial forging process. A nonlinear coupled finite element model is developed to investigate the deformation mechanism of internal void defects during the hot radial forging process. The model is formulated in a three-dimensional frame and a viscoplastic material model has been used to describe the material behavior subjected to large deformation and high temperature. A global–local technique is employed to obtain accurate solutions around the void region. The effects of void location, mandrel, die shape, and the reduction of the tube thickness on the final void reduction are systematically investigated. The predicted reductions for central longitudinal voids in hot upsetting and hot rolling processes are in good agreement with experimental findings. The simulation results provide a valuable procedure for the design of porosity reduction during the hot radial forging process.
doi_str_mv 10.1007/s00170-011-3876-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262368790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262368790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3d13677b42eff515185f5b570fac20ee31d7a8dd16a1bebc14e223d4607eccac3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWB8_wF3A9WhuMpOMS6lPKLhQt4ZMclNTpklNZoT-e6dUcOXqcuE7h8NHyAWwK2BMXRfGQLGKAVSiVbISB2QGtRCVYNAckhnjsq2Eku0xOSllNdESZDsjH6_D6LY0efqdgqO2T2XMSEOkn2mg2bhgeupTXoa4pJucLJZCx7L7xB2NKfYhosnUhxgGpNjjGuNATTT9toRyRo686Que_95T8v5w_zZ_qhYvj8_z20VlBcihEg6EVKqrOXrfQANt45uuUcwbyxmiAKdM6xxIAx12FmrkXLhaMoXWGitOyeW-d5r4NWIZ9CqNeRpRNOeSC9mqGzZRsKdsTqVk9HqTw9rkrQamdxr1XqOeNOqdRi2mDN9nysTGJea_5v9DP36Vdf4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262368790</pqid></control><display><type>article</type><title>Study of void closure in hot radial forging process using 3D nonlinear finite element analysis</title><source>SpringerNature Journals</source><creator>Chen, J. ; Chandrashekhara, K. ; Mahimkar, C. ; Lekakh, S. N. ; Richards, V. L.</creator><creatorcontrib>Chen, J. ; Chandrashekhara, K. ; Mahimkar, C. ; Lekakh, S. N. ; Richards, V. L.</creatorcontrib><description>Hot radial forging is used to reduce porosity and increase strength for large-diameter billets. The goal of this research is to study void closure behavior in the hot radial forging process. A nonlinear coupled finite element model is developed to investigate the deformation mechanism of internal void defects during the hot radial forging process. The model is formulated in a three-dimensional frame and a viscoplastic material model has been used to describe the material behavior subjected to large deformation and high temperature. A global–local technique is employed to obtain accurate solutions around the void region. The effects of void location, mandrel, die shape, and the reduction of the tube thickness on the final void reduction are systematically investigated. The predicted reductions for central longitudinal voids in hot upsetting and hot rolling processes are in good agreement with experimental findings. The simulation results provide a valuable procedure for the design of porosity reduction during the hot radial forging process.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-011-3876-3</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>Billets ; CAE) and Design ; Computer simulation ; Computer-Aided Engineering (CAD ; Deformation mechanisms ; Engineering ; Finite element method ; High temperature ; Hot rolling ; Hot upsetting ; Industrial and Production Engineering ; Mathematical models ; Mechanical Engineering ; Media Management ; Nonlinear analysis ; Original Article ; Porosity ; Radial forging ; Reduction ; Three dimensional models</subject><ispartof>International journal of advanced manufacturing technology, 2012-10, Vol.62 (9-12), p.1001-1011</ispartof><rights>Springer-Verlag London Limited 2012</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3d13677b42eff515185f5b570fac20ee31d7a8dd16a1bebc14e223d4607eccac3</citedby><cites>FETCH-LOGICAL-c316t-3d13677b42eff515185f5b570fac20ee31d7a8dd16a1bebc14e223d4607eccac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-011-3876-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-011-3876-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Chen, J.</creatorcontrib><creatorcontrib>Chandrashekhara, K.</creatorcontrib><creatorcontrib>Mahimkar, C.</creatorcontrib><creatorcontrib>Lekakh, S. N.</creatorcontrib><creatorcontrib>Richards, V. L.</creatorcontrib><title>Study of void closure in hot radial forging process using 3D nonlinear finite element analysis</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Hot radial forging is used to reduce porosity and increase strength for large-diameter billets. The goal of this research is to study void closure behavior in the hot radial forging process. A nonlinear coupled finite element model is developed to investigate the deformation mechanism of internal void defects during the hot radial forging process. The model is formulated in a three-dimensional frame and a viscoplastic material model has been used to describe the material behavior subjected to large deformation and high temperature. A global–local technique is employed to obtain accurate solutions around the void region. The effects of void location, mandrel, die shape, and the reduction of the tube thickness on the final void reduction are systematically investigated. The predicted reductions for central longitudinal voids in hot upsetting and hot rolling processes are in good agreement with experimental findings. The simulation results provide a valuable procedure for the design of porosity reduction during the hot radial forging process.</description><subject>Billets</subject><subject>CAE) and Design</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Deformation mechanisms</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>High temperature</subject><subject>Hot rolling</subject><subject>Hot upsetting</subject><subject>Industrial and Production Engineering</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Nonlinear analysis</subject><subject>Original Article</subject><subject>Porosity</subject><subject>Radial forging</subject><subject>Reduction</subject><subject>Three dimensional models</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtLAzEUhYMoWB8_wF3A9WhuMpOMS6lPKLhQt4ZMclNTpklNZoT-e6dUcOXqcuE7h8NHyAWwK2BMXRfGQLGKAVSiVbISB2QGtRCVYNAckhnjsq2Eku0xOSllNdESZDsjH6_D6LY0efqdgqO2T2XMSEOkn2mg2bhgeupTXoa4pJucLJZCx7L7xB2NKfYhosnUhxgGpNjjGuNATTT9toRyRo686Que_95T8v5w_zZ_qhYvj8_z20VlBcihEg6EVKqrOXrfQANt45uuUcwbyxmiAKdM6xxIAx12FmrkXLhaMoXWGitOyeW-d5r4NWIZ9CqNeRpRNOeSC9mqGzZRsKdsTqVk9HqTw9rkrQamdxr1XqOeNOqdRi2mDN9nysTGJea_5v9DP36Vdf4</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Chen, J.</creator><creator>Chandrashekhara, K.</creator><creator>Mahimkar, C.</creator><creator>Lekakh, S. N.</creator><creator>Richards, V. L.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121001</creationdate><title>Study of void closure in hot radial forging process using 3D nonlinear finite element analysis</title><author>Chen, J. ; Chandrashekhara, K. ; Mahimkar, C. ; Lekakh, S. N. ; Richards, V. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3d13677b42eff515185f5b570fac20ee31d7a8dd16a1bebc14e223d4607eccac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Billets</topic><topic>CAE) and Design</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Deformation mechanisms</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>High temperature</topic><topic>Hot rolling</topic><topic>Hot upsetting</topic><topic>Industrial and Production Engineering</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Nonlinear analysis</topic><topic>Original Article</topic><topic>Porosity</topic><topic>Radial forging</topic><topic>Reduction</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, J.</creatorcontrib><creatorcontrib>Chandrashekhara, K.</creatorcontrib><creatorcontrib>Mahimkar, C.</creatorcontrib><creatorcontrib>Lekakh, S. N.</creatorcontrib><creatorcontrib>Richards, V. L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, J.</au><au>Chandrashekhara, K.</au><au>Mahimkar, C.</au><au>Lekakh, S. N.</au><au>Richards, V. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of void closure in hot radial forging process using 3D nonlinear finite element analysis</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>62</volume><issue>9-12</issue><spage>1001</spage><epage>1011</epage><pages>1001-1011</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Hot radial forging is used to reduce porosity and increase strength for large-diameter billets. The goal of this research is to study void closure behavior in the hot radial forging process. A nonlinear coupled finite element model is developed to investigate the deformation mechanism of internal void defects during the hot radial forging process. The model is formulated in a three-dimensional frame and a viscoplastic material model has been used to describe the material behavior subjected to large deformation and high temperature. A global–local technique is employed to obtain accurate solutions around the void region. The effects of void location, mandrel, die shape, and the reduction of the tube thickness on the final void reduction are systematically investigated. The predicted reductions for central longitudinal voids in hot upsetting and hot rolling processes are in good agreement with experimental findings. The simulation results provide a valuable procedure for the design of porosity reduction during the hot radial forging process.</abstract><cop>London</cop><pub>Springer-Verlag</pub><doi>10.1007/s00170-011-3876-3</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2012-10, Vol.62 (9-12), p.1001-1011
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262368790
source SpringerNature Journals
subjects Billets
CAE) and Design
Computer simulation
Computer-Aided Engineering (CAD
Deformation mechanisms
Engineering
Finite element method
High temperature
Hot rolling
Hot upsetting
Industrial and Production Engineering
Mathematical models
Mechanical Engineering
Media Management
Nonlinear analysis
Original Article
Porosity
Radial forging
Reduction
Three dimensional models
title Study of void closure in hot radial forging process using 3D nonlinear finite element analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T15%3A52%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20void%20closure%20in%20hot%20radial%20forging%20process%20using%203D%20nonlinear%20finite%20element%20analysis&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Chen,%20J.&rft.date=2012-10-01&rft.volume=62&rft.issue=9-12&rft.spage=1001&rft.epage=1011&rft.pages=1001-1011&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-011-3876-3&rft_dat=%3Cproquest_cross%3E2262368790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262368790&rft_id=info:pmid/&rfr_iscdi=true