Positional, geometrical, and thermal errors compensation by tool path modification using three methods of regression, neural networks, and fuzzy logic
One of the main sources of inaccuracy in production is machine tool errors. In this study, a method is introduced to model and compensate positional, geometrical, and thermally induced errors of machine tools by an offline technique. Thermal errors are modeled by three ways of multiple linear regres...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2013-04, Vol.65 (9-12), p.1635-1649 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1649 |
---|---|
container_issue | 9-12 |
container_start_page | 1635 |
container_title | International journal of advanced manufacturing technology |
container_volume | 65 |
creator | Eskandari, Sina Arezoo, Behrooz Abdullah, Amir |
description | One of the main sources of inaccuracy in production is machine tool errors. In this study, a method is introduced to model and compensate positional, geometrical, and thermally induced errors of machine tools by an offline technique. Thermal errors are modeled by three ways of multiple linear regression, artificial neural networks, and neuro-fuzzy modeling. The required database is provided by measuring errors using a laser interferometer. Subsequently, the models are evaluated and the best one which is neuro-fuzzy with a mean square error of 0.375 μm is chosen to predict the errors using developed software. The experimental procedure is optimized by a preliminary broad assessment. Volumetric errors are calculated using rigid body kinematic and applied to modify the initial G-codes. The introduced method is validated by compensating errors on a free-form which shows significant average improvement of errors. |
doi_str_mv | 10.1007/s00170-012-4285-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262363249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262363249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6b00ca7089c4978e50933f8b36923669775cb37a5d18703e392d6368f8d1d9123</originalsourceid><addsrcrecordid>eNp1kM1q3DAURkVJoZM0D9CdoNtxqp-xJC_L0PzAQLJo10JjX3s8ta3pvTbBeZA8bzV1IaushNA5n-Aw9kWKGymE_UZCSCsyIVW2US7P5g9sJTdaZ1rI_IKthDIu09a4T-yS6JhoI41bsdenSO3YxiF0a95A7GHEtjxfwlDx8QDYh44DYkTiZexPMFA483w_8zHGjp_CeOB9rNo6ef9eJmqHJrkIwNPeIVbEY80RGgSiRKz5ABOm3QHG54i_afmtnl5eZt7Fpi0_s4916Aiu_59X7Nftj5_b-2z3ePew_b7LSi3NmJm9EGWwwhXlprAOclFoXbu9NoXSxhTW5uVe25BX0lmhQReqMtq42lWyKqTSV-zrsnvC-GcCGv0xTphikFfKpA2tNkWi5EKVGIkQan_Ctg84eyn8Ob9f8vuU35_z-zk5anEosUMD-Lb8vvQXwpyKiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262363249</pqid></control><display><type>article</type><title>Positional, geometrical, and thermal errors compensation by tool path modification using three methods of regression, neural networks, and fuzzy logic</title><source>Springer Nature - Complete Springer Journals</source><creator>Eskandari, Sina ; Arezoo, Behrooz ; Abdullah, Amir</creator><creatorcontrib>Eskandari, Sina ; Arezoo, Behrooz ; Abdullah, Amir</creatorcontrib><description>One of the main sources of inaccuracy in production is machine tool errors. In this study, a method is introduced to model and compensate positional, geometrical, and thermally induced errors of machine tools by an offline technique. Thermal errors are modeled by three ways of multiple linear regression, artificial neural networks, and neuro-fuzzy modeling. The required database is provided by measuring errors using a laser interferometer. Subsequently, the models are evaluated and the best one which is neuro-fuzzy with a mean square error of 0.375 μm is chosen to predict the errors using developed software. The experimental procedure is optimized by a preliminary broad assessment. Volumetric errors are calculated using rigid body kinematic and applied to modify the initial G-codes. The introduced method is validated by compensating errors on a free-form which shows significant average improvement of errors.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-012-4285-y</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>Artificial neural networks ; CAE) and Design ; Computer-Aided Engineering (CAD ; Engineering ; Free form ; Fuzzy logic ; Industrial and Production Engineering ; Machine tools ; Mechanical Engineering ; Media Management ; Neural networks ; Original Article ; Rigid structures</subject><ispartof>International journal of advanced manufacturing technology, 2013-04, Vol.65 (9-12), p.1635-1649</ispartof><rights>Springer-Verlag London Limited 2012</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6b00ca7089c4978e50933f8b36923669775cb37a5d18703e392d6368f8d1d9123</citedby><cites>FETCH-LOGICAL-c316t-6b00ca7089c4978e50933f8b36923669775cb37a5d18703e392d6368f8d1d9123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-012-4285-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-012-4285-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Eskandari, Sina</creatorcontrib><creatorcontrib>Arezoo, Behrooz</creatorcontrib><creatorcontrib>Abdullah, Amir</creatorcontrib><title>Positional, geometrical, and thermal errors compensation by tool path modification using three methods of regression, neural networks, and fuzzy logic</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>One of the main sources of inaccuracy in production is machine tool errors. In this study, a method is introduced to model and compensate positional, geometrical, and thermally induced errors of machine tools by an offline technique. Thermal errors are modeled by three ways of multiple linear regression, artificial neural networks, and neuro-fuzzy modeling. The required database is provided by measuring errors using a laser interferometer. Subsequently, the models are evaluated and the best one which is neuro-fuzzy with a mean square error of 0.375 μm is chosen to predict the errors using developed software. The experimental procedure is optimized by a preliminary broad assessment. Volumetric errors are calculated using rigid body kinematic and applied to modify the initial G-codes. The introduced method is validated by compensating errors on a free-form which shows significant average improvement of errors.</description><subject>Artificial neural networks</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Free form</subject><subject>Fuzzy logic</subject><subject>Industrial and Production Engineering</subject><subject>Machine tools</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Rigid structures</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1q3DAURkVJoZM0D9CdoNtxqp-xJC_L0PzAQLJo10JjX3s8ta3pvTbBeZA8bzV1IaushNA5n-Aw9kWKGymE_UZCSCsyIVW2US7P5g9sJTdaZ1rI_IKthDIu09a4T-yS6JhoI41bsdenSO3YxiF0a95A7GHEtjxfwlDx8QDYh44DYkTiZexPMFA483w_8zHGjp_CeOB9rNo6ef9eJmqHJrkIwNPeIVbEY80RGgSiRKz5ABOm3QHG54i_afmtnl5eZt7Fpi0_s4916Aiu_59X7Nftj5_b-2z3ePew_b7LSi3NmJm9EGWwwhXlprAOclFoXbu9NoXSxhTW5uVe25BX0lmhQReqMtq42lWyKqTSV-zrsnvC-GcCGv0xTphikFfKpA2tNkWi5EKVGIkQan_Ctg84eyn8Ob9f8vuU35_z-zk5anEosUMD-Lb8vvQXwpyKiQ</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Eskandari, Sina</creator><creator>Arezoo, Behrooz</creator><creator>Abdullah, Amir</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130401</creationdate><title>Positional, geometrical, and thermal errors compensation by tool path modification using three methods of regression, neural networks, and fuzzy logic</title><author>Eskandari, Sina ; Arezoo, Behrooz ; Abdullah, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6b00ca7089c4978e50933f8b36923669775cb37a5d18703e392d6368f8d1d9123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial neural networks</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Free form</topic><topic>Fuzzy logic</topic><topic>Industrial and Production Engineering</topic><topic>Machine tools</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Rigid structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eskandari, Sina</creatorcontrib><creatorcontrib>Arezoo, Behrooz</creatorcontrib><creatorcontrib>Abdullah, Amir</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eskandari, Sina</au><au>Arezoo, Behrooz</au><au>Abdullah, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positional, geometrical, and thermal errors compensation by tool path modification using three methods of regression, neural networks, and fuzzy logic</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>65</volume><issue>9-12</issue><spage>1635</spage><epage>1649</epage><pages>1635-1649</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>One of the main sources of inaccuracy in production is machine tool errors. In this study, a method is introduced to model and compensate positional, geometrical, and thermally induced errors of machine tools by an offline technique. Thermal errors are modeled by three ways of multiple linear regression, artificial neural networks, and neuro-fuzzy modeling. The required database is provided by measuring errors using a laser interferometer. Subsequently, the models are evaluated and the best one which is neuro-fuzzy with a mean square error of 0.375 μm is chosen to predict the errors using developed software. The experimental procedure is optimized by a preliminary broad assessment. Volumetric errors are calculated using rigid body kinematic and applied to modify the initial G-codes. The introduced method is validated by compensating errors on a free-form which shows significant average improvement of errors.</abstract><cop>London</cop><pub>Springer-Verlag</pub><doi>10.1007/s00170-012-4285-y</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2013-04, Vol.65 (9-12), p.1635-1649 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2262363249 |
source | Springer Nature - Complete Springer Journals |
subjects | Artificial neural networks CAE) and Design Computer-Aided Engineering (CAD Engineering Free form Fuzzy logic Industrial and Production Engineering Machine tools Mechanical Engineering Media Management Neural networks Original Article Rigid structures |
title | Positional, geometrical, and thermal errors compensation by tool path modification using three methods of regression, neural networks, and fuzzy logic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positional,%20geometrical,%20and%20thermal%20errors%20compensation%20by%20tool%20path%20modification%20using%20three%20methods%20of%20regression,%20neural%20networks,%20and%20fuzzy%20logic&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Eskandari,%20Sina&rft.date=2013-04-01&rft.volume=65&rft.issue=9-12&rft.spage=1635&rft.epage=1649&rft.pages=1635-1649&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-012-4285-y&rft_dat=%3Cproquest_cross%3E2262363249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262363249&rft_id=info:pmid/&rfr_iscdi=true |