Grooves into cylindrical shapes by wire electrochemical machining

Electrochemical machining (ECM) process has unique capabilities to offer a better alternative and sometimes is considered the only available option to cut or create intricate profiles into hard materials. ECM is a mirror-shaped-process; i.e., the shape developed into the workpiece is a mirror image...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2017-04, Vol.90 (1-4), p.445-455
Hauptverfasser: Araby, Sherif, Zaied, Roubi, Haridy, Salah, Kaytbay, Saleh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 455
container_issue 1-4
container_start_page 445
container_title International journal of advanced manufacturing technology
container_volume 90
creator Araby, Sherif
Zaied, Roubi
Haridy, Salah
Kaytbay, Saleh
description Electrochemical machining (ECM) process has unique capabilities to offer a better alternative and sometimes is considered the only available option to cut or create intricate profiles into hard materials. ECM is a mirror-shaped-process; i.e., the shape developed into the workpiece is a mirror image to the tool profile. This study presents an application of using copper wire as a tool to create peripheral grooves. This method saves time and cost of profiling the cathode as a mirror image of the predetermined workpiece shape. This article discusses the influences of input parameters—wire feed rate, wire diameter, and workpiece rotational speed—on the responses, frontal gap, metal removal rate, specific power consumption, and groove geometry, using response surface methodology (RSM). Mathematical models were developed for the aforementioned responses, and their adequacies were checked using analysis of variance (ANOVA). The process could be optimized to create predetermined groove with a specific width; for example, the optimum values of feed rate, wire diameter, and workpiece speed are 0.07 mm/min, 2.3 mm, and 450 rpm, respectively, to maximize the MRR and minimize the specific power consumption in order to create a groove of 9.4 mm in width.
doi_str_mv 10.1007/s00170-016-9389-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262355616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262355616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-64a060b2976e167bf3e9e4f0a0c8972d9e546ad771408004d32643b49e13897b3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANwicTasf2I7x6qCFqkSFzhbjuO0rtK42Cmob49LOHCB00q738xqBqFbAvcEQD4kACIBAxG4YqrC7AxNCGcMMyDlOZoAFQozKdQlukppm2lBhJqg2SKG8OFS4fshFPbY-b6J3pquSBuzz_v6WHz66ArXOTvEYDdu933eGbvxve_X1-iiNV1yNz9zit6eHl_nS7x6WTzPZytsmZIDFtyAgJpWUjgiZN0yVzneggGrKkmbypVcmEZKwkEB8IZRwVnNK0dyHlmzKbobffcxvB9cGvQ2HGKfX2pKBWVlmRP9RxGlqCJUlieKjJSNIaXoWr2PfmfiURPQpz712KfONelTn5plDR01KbP92sVfzn-KvgDs93Xs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262355616</pqid></control><display><type>article</type><title>Grooves into cylindrical shapes by wire electrochemical machining</title><source>SpringerLink Journals - AutoHoldings</source><creator>Araby, Sherif ; Zaied, Roubi ; Haridy, Salah ; Kaytbay, Saleh</creator><creatorcontrib>Araby, Sherif ; Zaied, Roubi ; Haridy, Salah ; Kaytbay, Saleh</creatorcontrib><description>Electrochemical machining (ECM) process has unique capabilities to offer a better alternative and sometimes is considered the only available option to cut or create intricate profiles into hard materials. ECM is a mirror-shaped-process; i.e., the shape developed into the workpiece is a mirror image to the tool profile. This study presents an application of using copper wire as a tool to create peripheral grooves. This method saves time and cost of profiling the cathode as a mirror image of the predetermined workpiece shape. This article discusses the influences of input parameters—wire feed rate, wire diameter, and workpiece rotational speed—on the responses, frontal gap, metal removal rate, specific power consumption, and groove geometry, using response surface methodology (RSM). Mathematical models were developed for the aforementioned responses, and their adequacies were checked using analysis of variance (ANOVA). The process could be optimized to create predetermined groove with a specific width; for example, the optimum values of feed rate, wire diameter, and workpiece speed are 0.07 mm/min, 2.3 mm, and 450 rpm, respectively, to maximize the MRR and minimize the specific power consumption in order to create a groove of 9.4 mm in width.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-016-9389-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Computer-Aided Engineering (CAD ; Copper wire ; Electrochemical machining ; Engineering ; Feed rate ; Grooves ; Hard materials ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Original Article ; Power consumption ; Response surface methodology ; Variance analysis ; Workpieces</subject><ispartof>International journal of advanced manufacturing technology, 2017-04, Vol.90 (1-4), p.445-455</ispartof><rights>Springer-Verlag London 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-64a060b2976e167bf3e9e4f0a0c8972d9e546ad771408004d32643b49e13897b3</citedby><cites>FETCH-LOGICAL-c387t-64a060b2976e167bf3e9e4f0a0c8972d9e546ad771408004d32643b49e13897b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-016-9389-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-016-9389-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Araby, Sherif</creatorcontrib><creatorcontrib>Zaied, Roubi</creatorcontrib><creatorcontrib>Haridy, Salah</creatorcontrib><creatorcontrib>Kaytbay, Saleh</creatorcontrib><title>Grooves into cylindrical shapes by wire electrochemical machining</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Electrochemical machining (ECM) process has unique capabilities to offer a better alternative and sometimes is considered the only available option to cut or create intricate profiles into hard materials. ECM is a mirror-shaped-process; i.e., the shape developed into the workpiece is a mirror image to the tool profile. This study presents an application of using copper wire as a tool to create peripheral grooves. This method saves time and cost of profiling the cathode as a mirror image of the predetermined workpiece shape. This article discusses the influences of input parameters—wire feed rate, wire diameter, and workpiece rotational speed—on the responses, frontal gap, metal removal rate, specific power consumption, and groove geometry, using response surface methodology (RSM). Mathematical models were developed for the aforementioned responses, and their adequacies were checked using analysis of variance (ANOVA). The process could be optimized to create predetermined groove with a specific width; for example, the optimum values of feed rate, wire diameter, and workpiece speed are 0.07 mm/min, 2.3 mm, and 450 rpm, respectively, to maximize the MRR and minimize the specific power consumption in order to create a groove of 9.4 mm in width.</description><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Copper wire</subject><subject>Electrochemical machining</subject><subject>Engineering</subject><subject>Feed rate</subject><subject>Grooves</subject><subject>Hard materials</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Power consumption</subject><subject>Response surface methodology</subject><subject>Variance analysis</subject><subject>Workpieces</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwANwicTasf2I7x6qCFqkSFzhbjuO0rtK42Cmob49LOHCB00q738xqBqFbAvcEQD4kACIBAxG4YqrC7AxNCGcMMyDlOZoAFQozKdQlukppm2lBhJqg2SKG8OFS4fshFPbY-b6J3pquSBuzz_v6WHz66ArXOTvEYDdu933eGbvxve_X1-iiNV1yNz9zit6eHl_nS7x6WTzPZytsmZIDFtyAgJpWUjgiZN0yVzneggGrKkmbypVcmEZKwkEB8IZRwVnNK0dyHlmzKbobffcxvB9cGvQ2HGKfX2pKBWVlmRP9RxGlqCJUlieKjJSNIaXoWr2PfmfiURPQpz712KfONelTn5plDR01KbP92sVfzn-KvgDs93Xs</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Araby, Sherif</creator><creator>Zaied, Roubi</creator><creator>Haridy, Salah</creator><creator>Kaytbay, Saleh</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170401</creationdate><title>Grooves into cylindrical shapes by wire electrochemical machining</title><author>Araby, Sherif ; Zaied, Roubi ; Haridy, Salah ; Kaytbay, Saleh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-64a060b2976e167bf3e9e4f0a0c8972d9e546ad771408004d32643b49e13897b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Copper wire</topic><topic>Electrochemical machining</topic><topic>Engineering</topic><topic>Feed rate</topic><topic>Grooves</topic><topic>Hard materials</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Power consumption</topic><topic>Response surface methodology</topic><topic>Variance analysis</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Araby, Sherif</creatorcontrib><creatorcontrib>Zaied, Roubi</creatorcontrib><creatorcontrib>Haridy, Salah</creatorcontrib><creatorcontrib>Kaytbay, Saleh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Araby, Sherif</au><au>Zaied, Roubi</au><au>Haridy, Salah</au><au>Kaytbay, Saleh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grooves into cylindrical shapes by wire electrochemical machining</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>90</volume><issue>1-4</issue><spage>445</spage><epage>455</epage><pages>445-455</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Electrochemical machining (ECM) process has unique capabilities to offer a better alternative and sometimes is considered the only available option to cut or create intricate profiles into hard materials. ECM is a mirror-shaped-process; i.e., the shape developed into the workpiece is a mirror image to the tool profile. This study presents an application of using copper wire as a tool to create peripheral grooves. This method saves time and cost of profiling the cathode as a mirror image of the predetermined workpiece shape. This article discusses the influences of input parameters—wire feed rate, wire diameter, and workpiece rotational speed—on the responses, frontal gap, metal removal rate, specific power consumption, and groove geometry, using response surface methodology (RSM). Mathematical models were developed for the aforementioned responses, and their adequacies were checked using analysis of variance (ANOVA). The process could be optimized to create predetermined groove with a specific width; for example, the optimum values of feed rate, wire diameter, and workpiece speed are 0.07 mm/min, 2.3 mm, and 450 rpm, respectively, to maximize the MRR and minimize the specific power consumption in order to create a groove of 9.4 mm in width.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-016-9389-3</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2017-04, Vol.90 (1-4), p.445-455
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262355616
source SpringerLink Journals - AutoHoldings
subjects CAE) and Design
Computer-Aided Engineering (CAD
Copper wire
Electrochemical machining
Engineering
Feed rate
Grooves
Hard materials
Industrial and Production Engineering
Mechanical Engineering
Media Management
Original Article
Power consumption
Response surface methodology
Variance analysis
Workpieces
title Grooves into cylindrical shapes by wire electrochemical machining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grooves%20into%20cylindrical%20shapes%20by%20wire%20electrochemical%20machining&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Araby,%20Sherif&rft.date=2017-04-01&rft.volume=90&rft.issue=1-4&rft.spage=445&rft.epage=455&rft.pages=445-455&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-016-9389-3&rft_dat=%3Cproquest_cross%3E2262355616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262355616&rft_id=info:pmid/&rfr_iscdi=true