Residual stress modeling in minimum quantity lubrication grinding
Minimum quantity lubrication (MQL) has been proposed as a promising alternative to conventional flood cooling to substantially reduce the lubrication usage while maintaining high surface quality. Residual stress induced by grinding process directly affects the surface quality of the final product. A...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2016-03, Vol.83 (5-8), p.743-751 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 751 |
---|---|
container_issue | 5-8 |
container_start_page | 743 |
container_title | International journal of advanced manufacturing technology |
container_volume | 83 |
creator | Shao, Yamin Fergani, Omar Li, Beizhi Liang, Steven Y. |
description | Minimum quantity lubrication (MQL) has been proposed as a promising alternative to conventional flood cooling to substantially reduce the lubrication usage while maintaining high surface quality. Residual stress induced by grinding process directly affects the surface quality of the final product. An analytical relationship between residual stresses and process conditions such as process parameters, material properties, and lubrication conditions could support process planning and optimization of MQL grinding. This paper has presented a physics-based model to predict residual stresses in grinding with consideration of the lubrication and cooling effects of MQL. Grinding force and temperature distribution in the workpiece are used to calculate the loading stresses imparted by MQL grinding. The loading stresses are then coupled into a rolling/sliding contact algorithm to solve for residual stresses. Experimental measurements of residual stress profile under and flood cooling conditions have been pursued to calibrate and validate the predicted results. |
doi_str_mv | 10.1007/s00170-015-7527-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262355347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262355347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-d1aff1c739d673b161c18918c9b7f7ee40d2d4ca544988cbe634f1fad6e17bb43</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcF19G8mqTLYfAFA4LoOqR5DBnadCZpF_33ZqjgytWFy3fOgQ-Ae4weMULiKSOEBYII11DURMD5AqwwoxTS8roEK0S4hFRweQ1ucj4UmmMuV2Dz6XKwk-6qPCaXc9UP1nUh7qsQqz7E0E99dZp0HMM4V93UpmD0GIZY7VOItoC34MrrLru737sG3y_PX9s3uPt4fd9udtBQyUdosfYeG0EbywVty7zBssHSNK3wwjmGLLHM6JqxRkrTOk6Zx15b7rBoW0bX4GHpPabhNLk8qsMwpVgmFSGc0LqmTBQKL5RJQ87JeXVModdpVhipsym1mFJFizqbUnPJkCWTCxv3Lv01_x_6AeSubPM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262355347</pqid></control><display><type>article</type><title>Residual stress modeling in minimum quantity lubrication grinding</title><source>Springer Nature - Complete Springer Journals</source><creator>Shao, Yamin ; Fergani, Omar ; Li, Beizhi ; Liang, Steven Y.</creator><creatorcontrib>Shao, Yamin ; Fergani, Omar ; Li, Beizhi ; Liang, Steven Y.</creatorcontrib><description>Minimum quantity lubrication (MQL) has been proposed as a promising alternative to conventional flood cooling to substantially reduce the lubrication usage while maintaining high surface quality. Residual stress induced by grinding process directly affects the surface quality of the final product. An analytical relationship between residual stresses and process conditions such as process parameters, material properties, and lubrication conditions could support process planning and optimization of MQL grinding. This paper has presented a physics-based model to predict residual stresses in grinding with consideration of the lubrication and cooling effects of MQL. Grinding force and temperature distribution in the workpiece are used to calculate the loading stresses imparted by MQL grinding. The loading stresses are then coupled into a rolling/sliding contact algorithm to solve for residual stresses. Experimental measurements of residual stress profile under and flood cooling conditions have been pursued to calibrate and validate the predicted results.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-015-7527-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; CAE) and Design ; Computer-Aided Engineering (CAD ; Contact stresses ; Cooling ; Cooling effects ; Engineering ; Flood predictions ; Force distribution ; Grinding ; Industrial and Production Engineering ; Lubrication ; Material properties ; Mechanical Engineering ; Media Management ; Optimization ; Original Article ; Process parameters ; Process planning ; Residual stress ; Sliding contact ; Stress concentration ; Surface properties ; Temperature distribution ; Workpieces</subject><ispartof>International journal of advanced manufacturing technology, 2016-03, Vol.83 (5-8), p.743-751</ispartof><rights>Springer-Verlag London 2015</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-d1aff1c739d673b161c18918c9b7f7ee40d2d4ca544988cbe634f1fad6e17bb43</citedby><cites>FETCH-LOGICAL-c386t-d1aff1c739d673b161c18918c9b7f7ee40d2d4ca544988cbe634f1fad6e17bb43</cites><orcidid>0000-0002-8716-6614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-015-7527-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-015-7527-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Shao, Yamin</creatorcontrib><creatorcontrib>Fergani, Omar</creatorcontrib><creatorcontrib>Li, Beizhi</creatorcontrib><creatorcontrib>Liang, Steven Y.</creatorcontrib><title>Residual stress modeling in minimum quantity lubrication grinding</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Minimum quantity lubrication (MQL) has been proposed as a promising alternative to conventional flood cooling to substantially reduce the lubrication usage while maintaining high surface quality. Residual stress induced by grinding process directly affects the surface quality of the final product. An analytical relationship between residual stresses and process conditions such as process parameters, material properties, and lubrication conditions could support process planning and optimization of MQL grinding. This paper has presented a physics-based model to predict residual stresses in grinding with consideration of the lubrication and cooling effects of MQL. Grinding force and temperature distribution in the workpiece are used to calculate the loading stresses imparted by MQL grinding. The loading stresses are then coupled into a rolling/sliding contact algorithm to solve for residual stresses. Experimental measurements of residual stress profile under and flood cooling conditions have been pursued to calibrate and validate the predicted results.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Contact stresses</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Engineering</subject><subject>Flood predictions</subject><subject>Force distribution</subject><subject>Grinding</subject><subject>Industrial and Production Engineering</subject><subject>Lubrication</subject><subject>Material properties</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Process parameters</subject><subject>Process planning</subject><subject>Residual stress</subject><subject>Sliding contact</subject><subject>Stress concentration</subject><subject>Surface properties</subject><subject>Temperature distribution</subject><subject>Workpieces</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcF19G8mqTLYfAFA4LoOqR5DBnadCZpF_33ZqjgytWFy3fOgQ-Ae4weMULiKSOEBYII11DURMD5AqwwoxTS8roEK0S4hFRweQ1ucj4UmmMuV2Dz6XKwk-6qPCaXc9UP1nUh7qsQqz7E0E99dZp0HMM4V93UpmD0GIZY7VOItoC34MrrLru737sG3y_PX9s3uPt4fd9udtBQyUdosfYeG0EbywVty7zBssHSNK3wwjmGLLHM6JqxRkrTOk6Zx15b7rBoW0bX4GHpPabhNLk8qsMwpVgmFSGc0LqmTBQKL5RJQ87JeXVModdpVhipsym1mFJFizqbUnPJkCWTCxv3Lv01_x_6AeSubPM</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Shao, Yamin</creator><creator>Fergani, Omar</creator><creator>Li, Beizhi</creator><creator>Liang, Steven Y.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8716-6614</orcidid></search><sort><creationdate>20160301</creationdate><title>Residual stress modeling in minimum quantity lubrication grinding</title><author>Shao, Yamin ; Fergani, Omar ; Li, Beizhi ; Liang, Steven Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-d1aff1c739d673b161c18918c9b7f7ee40d2d4ca544988cbe634f1fad6e17bb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Contact stresses</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Engineering</topic><topic>Flood predictions</topic><topic>Force distribution</topic><topic>Grinding</topic><topic>Industrial and Production Engineering</topic><topic>Lubrication</topic><topic>Material properties</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Process parameters</topic><topic>Process planning</topic><topic>Residual stress</topic><topic>Sliding contact</topic><topic>Stress concentration</topic><topic>Surface properties</topic><topic>Temperature distribution</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Yamin</creatorcontrib><creatorcontrib>Fergani, Omar</creatorcontrib><creatorcontrib>Li, Beizhi</creatorcontrib><creatorcontrib>Liang, Steven Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Yamin</au><au>Fergani, Omar</au><au>Li, Beizhi</au><au>Liang, Steven Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Residual stress modeling in minimum quantity lubrication grinding</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>83</volume><issue>5-8</issue><spage>743</spage><epage>751</epage><pages>743-751</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Minimum quantity lubrication (MQL) has been proposed as a promising alternative to conventional flood cooling to substantially reduce the lubrication usage while maintaining high surface quality. Residual stress induced by grinding process directly affects the surface quality of the final product. An analytical relationship between residual stresses and process conditions such as process parameters, material properties, and lubrication conditions could support process planning and optimization of MQL grinding. This paper has presented a physics-based model to predict residual stresses in grinding with consideration of the lubrication and cooling effects of MQL. Grinding force and temperature distribution in the workpiece are used to calculate the loading stresses imparted by MQL grinding. The loading stresses are then coupled into a rolling/sliding contact algorithm to solve for residual stresses. Experimental measurements of residual stress profile under and flood cooling conditions have been pursued to calibrate and validate the predicted results.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-015-7527-y</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8716-6614</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2016-03, Vol.83 (5-8), p.743-751 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2262355347 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms CAE) and Design Computer-Aided Engineering (CAD Contact stresses Cooling Cooling effects Engineering Flood predictions Force distribution Grinding Industrial and Production Engineering Lubrication Material properties Mechanical Engineering Media Management Optimization Original Article Process parameters Process planning Residual stress Sliding contact Stress concentration Surface properties Temperature distribution Workpieces |
title | Residual stress modeling in minimum quantity lubrication grinding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Residual%20stress%20modeling%20in%20minimum%20quantity%20lubrication%20grinding&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Shao,%20Yamin&rft.date=2016-03-01&rft.volume=83&rft.issue=5-8&rft.spage=743&rft.epage=751&rft.pages=743-751&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-015-7527-y&rft_dat=%3Cproquest_cross%3E2262355347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262355347&rft_id=info:pmid/&rfr_iscdi=true |