Residual stress modeling in minimum quantity lubrication grinding

Minimum quantity lubrication (MQL) has been proposed as a promising alternative to conventional flood cooling to substantially reduce the lubrication usage while maintaining high surface quality. Residual stress induced by grinding process directly affects the surface quality of the final product. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2016-03, Vol.83 (5-8), p.743-751
Hauptverfasser: Shao, Yamin, Fergani, Omar, Li, Beizhi, Liang, Steven Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 751
container_issue 5-8
container_start_page 743
container_title International journal of advanced manufacturing technology
container_volume 83
creator Shao, Yamin
Fergani, Omar
Li, Beizhi
Liang, Steven Y.
description Minimum quantity lubrication (MQL) has been proposed as a promising alternative to conventional flood cooling to substantially reduce the lubrication usage while maintaining high surface quality. Residual stress induced by grinding process directly affects the surface quality of the final product. An analytical relationship between residual stresses and process conditions such as process parameters, material properties, and lubrication conditions could support process planning and optimization of MQL grinding. This paper has presented a physics-based model to predict residual stresses in grinding with consideration of the lubrication and cooling effects of MQL. Grinding force and temperature distribution in the workpiece are used to calculate the loading stresses imparted by MQL grinding. The loading stresses are then coupled into a rolling/sliding contact algorithm to solve for residual stresses. Experimental measurements of residual stress profile under and flood cooling conditions have been pursued to calibrate and validate the predicted results.
doi_str_mv 10.1007/s00170-015-7527-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262355347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262355347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-d1aff1c739d673b161c18918c9b7f7ee40d2d4ca544988cbe634f1fad6e17bb43</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcF19G8mqTLYfAFA4LoOqR5DBnadCZpF_33ZqjgytWFy3fOgQ-Ae4weMULiKSOEBYII11DURMD5AqwwoxTS8roEK0S4hFRweQ1ucj4UmmMuV2Dz6XKwk-6qPCaXc9UP1nUh7qsQqz7E0E99dZp0HMM4V93UpmD0GIZY7VOItoC34MrrLru737sG3y_PX9s3uPt4fd9udtBQyUdosfYeG0EbywVty7zBssHSNK3wwjmGLLHM6JqxRkrTOk6Zx15b7rBoW0bX4GHpPabhNLk8qsMwpVgmFSGc0LqmTBQKL5RJQ87JeXVModdpVhipsym1mFJFizqbUnPJkCWTCxv3Lv01_x_6AeSubPM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262355347</pqid></control><display><type>article</type><title>Residual stress modeling in minimum quantity lubrication grinding</title><source>Springer Nature - Complete Springer Journals</source><creator>Shao, Yamin ; Fergani, Omar ; Li, Beizhi ; Liang, Steven Y.</creator><creatorcontrib>Shao, Yamin ; Fergani, Omar ; Li, Beizhi ; Liang, Steven Y.</creatorcontrib><description>Minimum quantity lubrication (MQL) has been proposed as a promising alternative to conventional flood cooling to substantially reduce the lubrication usage while maintaining high surface quality. Residual stress induced by grinding process directly affects the surface quality of the final product. An analytical relationship between residual stresses and process conditions such as process parameters, material properties, and lubrication conditions could support process planning and optimization of MQL grinding. This paper has presented a physics-based model to predict residual stresses in grinding with consideration of the lubrication and cooling effects of MQL. Grinding force and temperature distribution in the workpiece are used to calculate the loading stresses imparted by MQL grinding. The loading stresses are then coupled into a rolling/sliding contact algorithm to solve for residual stresses. Experimental measurements of residual stress profile under and flood cooling conditions have been pursued to calibrate and validate the predicted results.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-015-7527-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; CAE) and Design ; Computer-Aided Engineering (CAD ; Contact stresses ; Cooling ; Cooling effects ; Engineering ; Flood predictions ; Force distribution ; Grinding ; Industrial and Production Engineering ; Lubrication ; Material properties ; Mechanical Engineering ; Media Management ; Optimization ; Original Article ; Process parameters ; Process planning ; Residual stress ; Sliding contact ; Stress concentration ; Surface properties ; Temperature distribution ; Workpieces</subject><ispartof>International journal of advanced manufacturing technology, 2016-03, Vol.83 (5-8), p.743-751</ispartof><rights>Springer-Verlag London 2015</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-d1aff1c739d673b161c18918c9b7f7ee40d2d4ca544988cbe634f1fad6e17bb43</citedby><cites>FETCH-LOGICAL-c386t-d1aff1c739d673b161c18918c9b7f7ee40d2d4ca544988cbe634f1fad6e17bb43</cites><orcidid>0000-0002-8716-6614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-015-7527-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-015-7527-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Shao, Yamin</creatorcontrib><creatorcontrib>Fergani, Omar</creatorcontrib><creatorcontrib>Li, Beizhi</creatorcontrib><creatorcontrib>Liang, Steven Y.</creatorcontrib><title>Residual stress modeling in minimum quantity lubrication grinding</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Minimum quantity lubrication (MQL) has been proposed as a promising alternative to conventional flood cooling to substantially reduce the lubrication usage while maintaining high surface quality. Residual stress induced by grinding process directly affects the surface quality of the final product. An analytical relationship between residual stresses and process conditions such as process parameters, material properties, and lubrication conditions could support process planning and optimization of MQL grinding. This paper has presented a physics-based model to predict residual stresses in grinding with consideration of the lubrication and cooling effects of MQL. Grinding force and temperature distribution in the workpiece are used to calculate the loading stresses imparted by MQL grinding. The loading stresses are then coupled into a rolling/sliding contact algorithm to solve for residual stresses. Experimental measurements of residual stress profile under and flood cooling conditions have been pursued to calibrate and validate the predicted results.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Contact stresses</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Engineering</subject><subject>Flood predictions</subject><subject>Force distribution</subject><subject>Grinding</subject><subject>Industrial and Production Engineering</subject><subject>Lubrication</subject><subject>Material properties</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Process parameters</subject><subject>Process planning</subject><subject>Residual stress</subject><subject>Sliding contact</subject><subject>Stress concentration</subject><subject>Surface properties</subject><subject>Temperature distribution</subject><subject>Workpieces</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcF19G8mqTLYfAFA4LoOqR5DBnadCZpF_33ZqjgytWFy3fOgQ-Ae4weMULiKSOEBYII11DURMD5AqwwoxTS8roEK0S4hFRweQ1ucj4UmmMuV2Dz6XKwk-6qPCaXc9UP1nUh7qsQqz7E0E99dZp0HMM4V93UpmD0GIZY7VOItoC34MrrLru737sG3y_PX9s3uPt4fd9udtBQyUdosfYeG0EbywVty7zBssHSNK3wwjmGLLHM6JqxRkrTOk6Zx15b7rBoW0bX4GHpPabhNLk8qsMwpVgmFSGc0LqmTBQKL5RJQ87JeXVModdpVhipsym1mFJFizqbUnPJkCWTCxv3Lv01_x_6AeSubPM</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Shao, Yamin</creator><creator>Fergani, Omar</creator><creator>Li, Beizhi</creator><creator>Liang, Steven Y.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8716-6614</orcidid></search><sort><creationdate>20160301</creationdate><title>Residual stress modeling in minimum quantity lubrication grinding</title><author>Shao, Yamin ; Fergani, Omar ; Li, Beizhi ; Liang, Steven Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-d1aff1c739d673b161c18918c9b7f7ee40d2d4ca544988cbe634f1fad6e17bb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Contact stresses</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Engineering</topic><topic>Flood predictions</topic><topic>Force distribution</topic><topic>Grinding</topic><topic>Industrial and Production Engineering</topic><topic>Lubrication</topic><topic>Material properties</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Process parameters</topic><topic>Process planning</topic><topic>Residual stress</topic><topic>Sliding contact</topic><topic>Stress concentration</topic><topic>Surface properties</topic><topic>Temperature distribution</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Yamin</creatorcontrib><creatorcontrib>Fergani, Omar</creatorcontrib><creatorcontrib>Li, Beizhi</creatorcontrib><creatorcontrib>Liang, Steven Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Yamin</au><au>Fergani, Omar</au><au>Li, Beizhi</au><au>Liang, Steven Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Residual stress modeling in minimum quantity lubrication grinding</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>83</volume><issue>5-8</issue><spage>743</spage><epage>751</epage><pages>743-751</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Minimum quantity lubrication (MQL) has been proposed as a promising alternative to conventional flood cooling to substantially reduce the lubrication usage while maintaining high surface quality. Residual stress induced by grinding process directly affects the surface quality of the final product. An analytical relationship between residual stresses and process conditions such as process parameters, material properties, and lubrication conditions could support process planning and optimization of MQL grinding. This paper has presented a physics-based model to predict residual stresses in grinding with consideration of the lubrication and cooling effects of MQL. Grinding force and temperature distribution in the workpiece are used to calculate the loading stresses imparted by MQL grinding. The loading stresses are then coupled into a rolling/sliding contact algorithm to solve for residual stresses. Experimental measurements of residual stress profile under and flood cooling conditions have been pursued to calibrate and validate the predicted results.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-015-7527-y</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8716-6614</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2016-03, Vol.83 (5-8), p.743-751
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262355347
source Springer Nature - Complete Springer Journals
subjects Algorithms
CAE) and Design
Computer-Aided Engineering (CAD
Contact stresses
Cooling
Cooling effects
Engineering
Flood predictions
Force distribution
Grinding
Industrial and Production Engineering
Lubrication
Material properties
Mechanical Engineering
Media Management
Optimization
Original Article
Process parameters
Process planning
Residual stress
Sliding contact
Stress concentration
Surface properties
Temperature distribution
Workpieces
title Residual stress modeling in minimum quantity lubrication grinding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Residual%20stress%20modeling%20in%20minimum%20quantity%20lubrication%20grinding&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Shao,%20Yamin&rft.date=2016-03-01&rft.volume=83&rft.issue=5-8&rft.spage=743&rft.epage=751&rft.pages=743-751&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-015-7527-y&rft_dat=%3Cproquest_cross%3E2262355347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262355347&rft_id=info:pmid/&rfr_iscdi=true