The skipping strategy to reduce the effect of the autocorrelation on the T 2 chart’s performance

In this article, we consider the T2 control chart for bivariate samples of size n with observations that are not only cross-correlated but also autocorrelated. The cross-covariance matrix of the sample mean vectors were derived with the assumption that the observations are described by a first-order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2015-10, Vol.80 (9-12), p.1547-1559
Hauptverfasser: Leoni, Roberto Campos, Costa, Antonio Fernando Branco, Franco, Bruno Chaves, Machado, Marcela Aparecida Guerreiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1559
container_issue 9-12
container_start_page 1547
container_title International journal of advanced manufacturing technology
container_volume 80
creator Leoni, Roberto Campos
Costa, Antonio Fernando Branco
Franco, Bruno Chaves
Machado, Marcela Aparecida Guerreiro
description In this article, we consider the T2 control chart for bivariate samples of size n with observations that are not only cross-correlated but also autocorrelated. The cross-covariance matrix of the sample mean vectors were derived with the assumption that the observations are described by a first-order vector autoregressive model—VAR (1). To counteract the undesired effect of autocorrelation, we build up the samples taking one item from the production line and skipping one, two, or more before selecting the next one. The skipping strategy always improves the chart’s performance, except when only one variable is affected by the assignable cause, and the observations of this variable are not autocorrelated. If only one item is skipped, the average run length (ARL) reduces in more than 30 %, on average. If two items are skipped, this number increases to 40 %.
doi_str_mv 10.1007/s00170-015-7095-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262323123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262323123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2311-7346ebc9a52e5ea434037e19e4228cff5a2ef771725dfc07f0a8fe1bef9782673</originalsourceid><addsrcrecordid>eNotkM1KAzEUhYMoWKsP4C7gOpqbzCQzSyn-geCmrkOa3rRT28mYZBbd-Rq-nk9iaoULl3vO4R74CLkGfguc67vEOWjOONRM87ZmcEImUEnJZJFOyYQL1TCpVXNOLlLalLQC1UzIYr5Gmj66Yej6FU052oyrPc2BRlyODmkuPnqPLtPg_y475uBCjLi1uQs9LXOQ51RQt7Yx_3x9Jzpg9CHubO_wkpx5u0149b-n5P3xYT57Zq9vTy-z-1fmhARgWlYKF661tcAabSUrLjVCi5UQjfO-tgK91qBFvfSOa89t4xEW6FvdCKXllNwc_w4xfI6YstmEMfal0gihhCwtQpYUHFMuhpQiejPEbmfj3gA3B5TmiNIUbuaA0oD8BaBWZ58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262323123</pqid></control><display><type>article</type><title>The skipping strategy to reduce the effect of the autocorrelation on the T 2 chart’s performance</title><source>SpringerLink Journals</source><creator>Leoni, Roberto Campos ; Costa, Antonio Fernando Branco ; Franco, Bruno Chaves ; Machado, Marcela Aparecida Guerreiro</creator><creatorcontrib>Leoni, Roberto Campos ; Costa, Antonio Fernando Branco ; Franco, Bruno Chaves ; Machado, Marcela Aparecida Guerreiro</creatorcontrib><description>In this article, we consider the T2 control chart for bivariate samples of size n with observations that are not only cross-correlated but also autocorrelated. The cross-covariance matrix of the sample mean vectors were derived with the assumption that the observations are described by a first-order vector autoregressive model—VAR (1). To counteract the undesired effect of autocorrelation, we build up the samples taking one item from the production line and skipping one, two, or more before selecting the next one. The skipping strategy always improves the chart’s performance, except when only one variable is affected by the assignable cause, and the observations of this variable are not autocorrelated. If only one item is skipped, the average run length (ARL) reduces in more than 30 %, on average. If two items are skipped, this number increases to 40 %.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-015-7095-1</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Autocorrelation ; Autoregressive models ; Bivariate analysis ; Control charts ; Covariance matrix ; Mathematical analysis ; Matrix algebra ; Matrix methods</subject><ispartof>International journal of advanced manufacturing technology, 2015-10, Vol.80 (9-12), p.1547-1559</ispartof><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2311-7346ebc9a52e5ea434037e19e4228cff5a2ef771725dfc07f0a8fe1bef9782673</citedby><cites>FETCH-LOGICAL-c2311-7346ebc9a52e5ea434037e19e4228cff5a2ef771725dfc07f0a8fe1bef9782673</cites><orcidid>0000-0001-6600-2963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Leoni, Roberto Campos</creatorcontrib><creatorcontrib>Costa, Antonio Fernando Branco</creatorcontrib><creatorcontrib>Franco, Bruno Chaves</creatorcontrib><creatorcontrib>Machado, Marcela Aparecida Guerreiro</creatorcontrib><title>The skipping strategy to reduce the effect of the autocorrelation on the T 2 chart’s performance</title><title>International journal of advanced manufacturing technology</title><description>In this article, we consider the T2 control chart for bivariate samples of size n with observations that are not only cross-correlated but also autocorrelated. The cross-covariance matrix of the sample mean vectors were derived with the assumption that the observations are described by a first-order vector autoregressive model—VAR (1). To counteract the undesired effect of autocorrelation, we build up the samples taking one item from the production line and skipping one, two, or more before selecting the next one. The skipping strategy always improves the chart’s performance, except when only one variable is affected by the assignable cause, and the observations of this variable are not autocorrelated. If only one item is skipped, the average run length (ARL) reduces in more than 30 %, on average. If two items are skipped, this number increases to 40 %.</description><subject>Autocorrelation</subject><subject>Autoregressive models</subject><subject>Bivariate analysis</subject><subject>Control charts</subject><subject>Covariance matrix</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkM1KAzEUhYMoWKsP4C7gOpqbzCQzSyn-geCmrkOa3rRT28mYZBbd-Rq-nk9iaoULl3vO4R74CLkGfguc67vEOWjOONRM87ZmcEImUEnJZJFOyYQL1TCpVXNOLlLalLQC1UzIYr5Gmj66Yej6FU052oyrPc2BRlyODmkuPnqPLtPg_y475uBCjLi1uQs9LXOQ51RQt7Yx_3x9Jzpg9CHubO_wkpx5u0149b-n5P3xYT57Zq9vTy-z-1fmhARgWlYKF661tcAabSUrLjVCi5UQjfO-tgK91qBFvfSOa89t4xEW6FvdCKXllNwc_w4xfI6YstmEMfal0gihhCwtQpYUHFMuhpQiejPEbmfj3gA3B5TmiNIUbuaA0oD8BaBWZ58</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Leoni, Roberto Campos</creator><creator>Costa, Antonio Fernando Branco</creator><creator>Franco, Bruno Chaves</creator><creator>Machado, Marcela Aparecida Guerreiro</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6600-2963</orcidid></search><sort><creationdate>20151001</creationdate><title>The skipping strategy to reduce the effect of the autocorrelation on the T 2 chart’s performance</title><author>Leoni, Roberto Campos ; Costa, Antonio Fernando Branco ; Franco, Bruno Chaves ; Machado, Marcela Aparecida Guerreiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2311-7346ebc9a52e5ea434037e19e4228cff5a2ef771725dfc07f0a8fe1bef9782673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Autocorrelation</topic><topic>Autoregressive models</topic><topic>Bivariate analysis</topic><topic>Control charts</topic><topic>Covariance matrix</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leoni, Roberto Campos</creatorcontrib><creatorcontrib>Costa, Antonio Fernando Branco</creatorcontrib><creatorcontrib>Franco, Bruno Chaves</creatorcontrib><creatorcontrib>Machado, Marcela Aparecida Guerreiro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leoni, Roberto Campos</au><au>Costa, Antonio Fernando Branco</au><au>Franco, Bruno Chaves</au><au>Machado, Marcela Aparecida Guerreiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The skipping strategy to reduce the effect of the autocorrelation on the T 2 chart’s performance</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>80</volume><issue>9-12</issue><spage>1547</spage><epage>1559</epage><pages>1547-1559</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In this article, we consider the T2 control chart for bivariate samples of size n with observations that are not only cross-correlated but also autocorrelated. The cross-covariance matrix of the sample mean vectors were derived with the assumption that the observations are described by a first-order vector autoregressive model—VAR (1). To counteract the undesired effect of autocorrelation, we build up the samples taking one item from the production line and skipping one, two, or more before selecting the next one. The skipping strategy always improves the chart’s performance, except when only one variable is affected by the assignable cause, and the observations of this variable are not autocorrelated. If only one item is skipped, the average run length (ARL) reduces in more than 30 %, on average. If two items are skipped, this number increases to 40 %.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00170-015-7095-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6600-2963</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2015-10, Vol.80 (9-12), p.1547-1559
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262323123
source SpringerLink Journals
subjects Autocorrelation
Autoregressive models
Bivariate analysis
Control charts
Covariance matrix
Mathematical analysis
Matrix algebra
Matrix methods
title The skipping strategy to reduce the effect of the autocorrelation on the T 2 chart’s performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20skipping%20strategy%20to%20reduce%20the%20effect%20of%20the%20autocorrelation%20on%20the%20T%202%20chart%E2%80%99s%20performance&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Leoni,%20Roberto%20Campos&rft.date=2015-10-01&rft.volume=80&rft.issue=9-12&rft.spage=1547&rft.epage=1559&rft.pages=1547-1559&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-015-7095-1&rft_dat=%3Cproquest_cross%3E2262323123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262323123&rft_id=info:pmid/&rfr_iscdi=true