The skipping strategy to reduce the effect of the autocorrelation on the T 2 chart’s performance
In this article, we consider the T2 control chart for bivariate samples of size n with observations that are not only cross-correlated but also autocorrelated. The cross-covariance matrix of the sample mean vectors were derived with the assumption that the observations are described by a first-order...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2015-10, Vol.80 (9-12), p.1547-1559 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1559 |
---|---|
container_issue | 9-12 |
container_start_page | 1547 |
container_title | International journal of advanced manufacturing technology |
container_volume | 80 |
creator | Leoni, Roberto Campos Costa, Antonio Fernando Branco Franco, Bruno Chaves Machado, Marcela Aparecida Guerreiro |
description | In this article, we consider the T2 control chart for bivariate samples of size n with observations that are not only cross-correlated but also autocorrelated. The cross-covariance matrix of the sample mean vectors were derived with the assumption that the observations are described by a first-order vector autoregressive model—VAR (1). To counteract the undesired effect of autocorrelation, we build up the samples taking one item from the production line and skipping one, two, or more before selecting the next one. The skipping strategy always improves the chart’s performance, except when only one variable is affected by the assignable cause, and the observations of this variable are not autocorrelated. If only one item is skipped, the average run length (ARL) reduces in more than 30 %, on average. If two items are skipped, this number increases to 40 %. |
doi_str_mv | 10.1007/s00170-015-7095-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262323123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262323123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2311-7346ebc9a52e5ea434037e19e4228cff5a2ef771725dfc07f0a8fe1bef9782673</originalsourceid><addsrcrecordid>eNotkM1KAzEUhYMoWKsP4C7gOpqbzCQzSyn-geCmrkOa3rRT28mYZBbd-Rq-nk9iaoULl3vO4R74CLkGfguc67vEOWjOONRM87ZmcEImUEnJZJFOyYQL1TCpVXNOLlLalLQC1UzIYr5Gmj66Yej6FU052oyrPc2BRlyODmkuPnqPLtPg_y475uBCjLi1uQs9LXOQ51RQt7Yx_3x9Jzpg9CHubO_wkpx5u0149b-n5P3xYT57Zq9vTy-z-1fmhARgWlYKF661tcAabSUrLjVCi5UQjfO-tgK91qBFvfSOa89t4xEW6FvdCKXllNwc_w4xfI6YstmEMfal0gihhCwtQpYUHFMuhpQiejPEbmfj3gA3B5TmiNIUbuaA0oD8BaBWZ58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262323123</pqid></control><display><type>article</type><title>The skipping strategy to reduce the effect of the autocorrelation on the T 2 chart’s performance</title><source>SpringerLink Journals</source><creator>Leoni, Roberto Campos ; Costa, Antonio Fernando Branco ; Franco, Bruno Chaves ; Machado, Marcela Aparecida Guerreiro</creator><creatorcontrib>Leoni, Roberto Campos ; Costa, Antonio Fernando Branco ; Franco, Bruno Chaves ; Machado, Marcela Aparecida Guerreiro</creatorcontrib><description>In this article, we consider the T2 control chart for bivariate samples of size n with observations that are not only cross-correlated but also autocorrelated. The cross-covariance matrix of the sample mean vectors were derived with the assumption that the observations are described by a first-order vector autoregressive model—VAR (1). To counteract the undesired effect of autocorrelation, we build up the samples taking one item from the production line and skipping one, two, or more before selecting the next one. The skipping strategy always improves the chart’s performance, except when only one variable is affected by the assignable cause, and the observations of this variable are not autocorrelated. If only one item is skipped, the average run length (ARL) reduces in more than 30 %, on average. If two items are skipped, this number increases to 40 %.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-015-7095-1</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Autocorrelation ; Autoregressive models ; Bivariate analysis ; Control charts ; Covariance matrix ; Mathematical analysis ; Matrix algebra ; Matrix methods</subject><ispartof>International journal of advanced manufacturing technology, 2015-10, Vol.80 (9-12), p.1547-1559</ispartof><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2311-7346ebc9a52e5ea434037e19e4228cff5a2ef771725dfc07f0a8fe1bef9782673</citedby><cites>FETCH-LOGICAL-c2311-7346ebc9a52e5ea434037e19e4228cff5a2ef771725dfc07f0a8fe1bef9782673</cites><orcidid>0000-0001-6600-2963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Leoni, Roberto Campos</creatorcontrib><creatorcontrib>Costa, Antonio Fernando Branco</creatorcontrib><creatorcontrib>Franco, Bruno Chaves</creatorcontrib><creatorcontrib>Machado, Marcela Aparecida Guerreiro</creatorcontrib><title>The skipping strategy to reduce the effect of the autocorrelation on the T 2 chart’s performance</title><title>International journal of advanced manufacturing technology</title><description>In this article, we consider the T2 control chart for bivariate samples of size n with observations that are not only cross-correlated but also autocorrelated. The cross-covariance matrix of the sample mean vectors were derived with the assumption that the observations are described by a first-order vector autoregressive model—VAR (1). To counteract the undesired effect of autocorrelation, we build up the samples taking one item from the production line and skipping one, two, or more before selecting the next one. The skipping strategy always improves the chart’s performance, except when only one variable is affected by the assignable cause, and the observations of this variable are not autocorrelated. If only one item is skipped, the average run length (ARL) reduces in more than 30 %, on average. If two items are skipped, this number increases to 40 %.</description><subject>Autocorrelation</subject><subject>Autoregressive models</subject><subject>Bivariate analysis</subject><subject>Control charts</subject><subject>Covariance matrix</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkM1KAzEUhYMoWKsP4C7gOpqbzCQzSyn-geCmrkOa3rRT28mYZBbd-Rq-nk9iaoULl3vO4R74CLkGfguc67vEOWjOONRM87ZmcEImUEnJZJFOyYQL1TCpVXNOLlLalLQC1UzIYr5Gmj66Yej6FU052oyrPc2BRlyODmkuPnqPLtPg_y475uBCjLi1uQs9LXOQ51RQt7Yx_3x9Jzpg9CHubO_wkpx5u0149b-n5P3xYT57Zq9vTy-z-1fmhARgWlYKF661tcAabSUrLjVCi5UQjfO-tgK91qBFvfSOa89t4xEW6FvdCKXllNwc_w4xfI6YstmEMfal0gihhCwtQpYUHFMuhpQiejPEbmfj3gA3B5TmiNIUbuaA0oD8BaBWZ58</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Leoni, Roberto Campos</creator><creator>Costa, Antonio Fernando Branco</creator><creator>Franco, Bruno Chaves</creator><creator>Machado, Marcela Aparecida Guerreiro</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6600-2963</orcidid></search><sort><creationdate>20151001</creationdate><title>The skipping strategy to reduce the effect of the autocorrelation on the T 2 chart’s performance</title><author>Leoni, Roberto Campos ; Costa, Antonio Fernando Branco ; Franco, Bruno Chaves ; Machado, Marcela Aparecida Guerreiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2311-7346ebc9a52e5ea434037e19e4228cff5a2ef771725dfc07f0a8fe1bef9782673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Autocorrelation</topic><topic>Autoregressive models</topic><topic>Bivariate analysis</topic><topic>Control charts</topic><topic>Covariance matrix</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leoni, Roberto Campos</creatorcontrib><creatorcontrib>Costa, Antonio Fernando Branco</creatorcontrib><creatorcontrib>Franco, Bruno Chaves</creatorcontrib><creatorcontrib>Machado, Marcela Aparecida Guerreiro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leoni, Roberto Campos</au><au>Costa, Antonio Fernando Branco</au><au>Franco, Bruno Chaves</au><au>Machado, Marcela Aparecida Guerreiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The skipping strategy to reduce the effect of the autocorrelation on the T 2 chart’s performance</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>80</volume><issue>9-12</issue><spage>1547</spage><epage>1559</epage><pages>1547-1559</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In this article, we consider the T2 control chart for bivariate samples of size n with observations that are not only cross-correlated but also autocorrelated. The cross-covariance matrix of the sample mean vectors were derived with the assumption that the observations are described by a first-order vector autoregressive model—VAR (1). To counteract the undesired effect of autocorrelation, we build up the samples taking one item from the production line and skipping one, two, or more before selecting the next one. The skipping strategy always improves the chart’s performance, except when only one variable is affected by the assignable cause, and the observations of this variable are not autocorrelated. If only one item is skipped, the average run length (ARL) reduces in more than 30 %, on average. If two items are skipped, this number increases to 40 %.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00170-015-7095-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6600-2963</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2015-10, Vol.80 (9-12), p.1547-1559 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2262323123 |
source | SpringerLink Journals |
subjects | Autocorrelation Autoregressive models Bivariate analysis Control charts Covariance matrix Mathematical analysis Matrix algebra Matrix methods |
title | The skipping strategy to reduce the effect of the autocorrelation on the T 2 chart’s performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20skipping%20strategy%20to%20reduce%20the%20effect%20of%20the%20autocorrelation%20on%20the%20T%202%20chart%E2%80%99s%20performance&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Leoni,%20Roberto%20Campos&rft.date=2015-10-01&rft.volume=80&rft.issue=9-12&rft.spage=1547&rft.epage=1559&rft.pages=1547-1559&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-015-7095-1&rft_dat=%3Cproquest_cross%3E2262323123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262323123&rft_id=info:pmid/&rfr_iscdi=true |