Analytical modeling and experimental validation of residual stress in micro-end-milling
Micro-milling is widely used in aerospace and precision optical part manufacturing. Residual stress is an important index of surface integrity, which signally affects the performance of the micro-parts. This paper presents an analytical model to predict micro-milling residual stresses considering to...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2016-12, Vol.87 (9-12), p.3411-3424 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3424 |
---|---|
container_issue | 9-12 |
container_start_page | 3411 |
container_title | International journal of advanced manufacturing technology |
container_volume | 87 |
creator | Peng, F. Y. Dong, Qiong Yan, Rong Zhou, Lin Zhan, Ce |
description | Micro-milling is widely used in aerospace and precision optical part manufacturing. Residual stress is an important index of surface integrity, which signally affects the performance of the micro-parts. This paper presents an analytical model to predict micro-milling residual stresses considering tool edge radius, material strengthening effects, and initial stress. A micro-milling cutting force prediction model is proposed, in which tool edge radius and material strengthening effects are taken into account. The imaginary heat source is utilized to estimate the temperature distribution in the workpiece. This model considers the prediction results of cutting force and temperature as thermomechanical loads experienced by the workpiece. Also, the effect of initial stress is taken into account during the estimation of residual stresses. After loading, unloading, and stresses release, the results of residual stresses in micro-milling are finally obtained. Both the micro-milling cutting force and residual stresses prediction results are validated by NAK80 steel on a three-axis ultra-precision machine. The predicted results capture the experiment results well in terms of distribution and value. Finally, the model is analyzed and discussed. The influences of tool edge radius, rake angle, feed per tooth, and spindle speed on residual stresses are preliminarily explored. |
doi_str_mv | 10.1007/s00170-016-8697-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262295106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880833861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-5060b1480b7873ad968cf0e2c1f9a71f2a44a3f428ef71af936c70a748b7dc333</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuC5-hMkibZYyl-QcGL4jGku0lJ2c3WzVbcf2_KevCipwmT531hHkKuEW4RQN0lAFRAASXVslR0PCEzFJxTDrg4JTNgUlOupD4nFyntMi1R6hl5X0bbjEOobFO0Xe2aELeFjXXhvvauD62LQ_75tE2o7RC6WHS-6F0K9SGv05CfqQixaEPVd9TFmrahOXZckjNvm-SufuacvD3cv66e6Prl8Xm1XNOKCzHQBUjYoNCwUVpxW5dSVx4cq9CXVqFnVgjLvWDaeYXWl1xWCqwSeqPqinM-JzdT777vPg4uDWbXHfp8UzKMScbKBYL8j0KtQXOuJWYKJyrfklLvvNlnA7YfDYI5WjaTZZPlmaNlM-YMmzIps3Hr-l_Nf4a-Ac9Zf9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262295106</pqid></control><display><type>article</type><title>Analytical modeling and experimental validation of residual stress in micro-end-milling</title><source>Springer Nature - Complete Springer Journals</source><creator>Peng, F. Y. ; Dong, Qiong ; Yan, Rong ; Zhou, Lin ; Zhan, Ce</creator><creatorcontrib>Peng, F. Y. ; Dong, Qiong ; Yan, Rong ; Zhou, Lin ; Zhan, Ce</creatorcontrib><description>Micro-milling is widely used in aerospace and precision optical part manufacturing. Residual stress is an important index of surface integrity, which signally affects the performance of the micro-parts. This paper presents an analytical model to predict micro-milling residual stresses considering tool edge radius, material strengthening effects, and initial stress. A micro-milling cutting force prediction model is proposed, in which tool edge radius and material strengthening effects are taken into account. The imaginary heat source is utilized to estimate the temperature distribution in the workpiece. This model considers the prediction results of cutting force and temperature as thermomechanical loads experienced by the workpiece. Also, the effect of initial stress is taken into account during the estimation of residual stresses. After loading, unloading, and stresses release, the results of residual stresses in micro-milling are finally obtained. Both the micro-milling cutting force and residual stresses prediction results are validated by NAK80 steel on a three-axis ultra-precision machine. The predicted results capture the experiment results well in terms of distribution and value. Finally, the model is analyzed and discussed. The influences of tool edge radius, rake angle, feed per tooth, and spindle speed on residual stresses are preliminarily explored.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-016-8697-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Computer-Aided Engineering (CAD ; Cutting force ; Cutting parameters ; End milling ; Engineering ; Industrial and Production Engineering ; Initial stresses ; Mathematical models ; Mechanical Engineering ; Media Management ; Milling (machining) ; Original Article ; Prediction models ; Rake angle ; Residual stress ; Strengthening ; Temperature distribution ; Three axis ; Workpieces</subject><ispartof>International journal of advanced manufacturing technology, 2016-12, Vol.87 (9-12), p.3411-3424</ispartof><rights>Springer-Verlag London 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-5060b1480b7873ad968cf0e2c1f9a71f2a44a3f428ef71af936c70a748b7dc333</citedby><cites>FETCH-LOGICAL-c344t-5060b1480b7873ad968cf0e2c1f9a71f2a44a3f428ef71af936c70a748b7dc333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-016-8697-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-016-8697-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Peng, F. Y.</creatorcontrib><creatorcontrib>Dong, Qiong</creatorcontrib><creatorcontrib>Yan, Rong</creatorcontrib><creatorcontrib>Zhou, Lin</creatorcontrib><creatorcontrib>Zhan, Ce</creatorcontrib><title>Analytical modeling and experimental validation of residual stress in micro-end-milling</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Micro-milling is widely used in aerospace and precision optical part manufacturing. Residual stress is an important index of surface integrity, which signally affects the performance of the micro-parts. This paper presents an analytical model to predict micro-milling residual stresses considering tool edge radius, material strengthening effects, and initial stress. A micro-milling cutting force prediction model is proposed, in which tool edge radius and material strengthening effects are taken into account. The imaginary heat source is utilized to estimate the temperature distribution in the workpiece. This model considers the prediction results of cutting force and temperature as thermomechanical loads experienced by the workpiece. Also, the effect of initial stress is taken into account during the estimation of residual stresses. After loading, unloading, and stresses release, the results of residual stresses in micro-milling are finally obtained. Both the micro-milling cutting force and residual stresses prediction results are validated by NAK80 steel on a three-axis ultra-precision machine. The predicted results capture the experiment results well in terms of distribution and value. Finally, the model is analyzed and discussed. The influences of tool edge radius, rake angle, feed per tooth, and spindle speed on residual stresses are preliminarily explored.</description><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cutting force</subject><subject>Cutting parameters</subject><subject>End milling</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Initial stresses</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Milling (machining)</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Rake angle</subject><subject>Residual stress</subject><subject>Strengthening</subject><subject>Temperature distribution</subject><subject>Three axis</subject><subject>Workpieces</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_wNuC5-hMkibZYyl-QcGL4jGku0lJ2c3WzVbcf2_KevCipwmT531hHkKuEW4RQN0lAFRAASXVslR0PCEzFJxTDrg4JTNgUlOupD4nFyntMi1R6hl5X0bbjEOobFO0Xe2aELeFjXXhvvauD62LQ_75tE2o7RC6WHS-6F0K9SGv05CfqQixaEPVd9TFmrahOXZckjNvm-SufuacvD3cv66e6Prl8Xm1XNOKCzHQBUjYoNCwUVpxW5dSVx4cq9CXVqFnVgjLvWDaeYXWl1xWCqwSeqPqinM-JzdT777vPg4uDWbXHfp8UzKMScbKBYL8j0KtQXOuJWYKJyrfklLvvNlnA7YfDYI5WjaTZZPlmaNlM-YMmzIps3Hr-l_Nf4a-Ac9Zf9g</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Peng, F. Y.</creator><creator>Dong, Qiong</creator><creator>Yan, Rong</creator><creator>Zhou, Lin</creator><creator>Zhan, Ce</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161201</creationdate><title>Analytical modeling and experimental validation of residual stress in micro-end-milling</title><author>Peng, F. Y. ; Dong, Qiong ; Yan, Rong ; Zhou, Lin ; Zhan, Ce</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-5060b1480b7873ad968cf0e2c1f9a71f2a44a3f428ef71af936c70a748b7dc333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cutting force</topic><topic>Cutting parameters</topic><topic>End milling</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Initial stresses</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Milling (machining)</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Rake angle</topic><topic>Residual stress</topic><topic>Strengthening</topic><topic>Temperature distribution</topic><topic>Three axis</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, F. Y.</creatorcontrib><creatorcontrib>Dong, Qiong</creatorcontrib><creatorcontrib>Yan, Rong</creatorcontrib><creatorcontrib>Zhou, Lin</creatorcontrib><creatorcontrib>Zhan, Ce</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, F. Y.</au><au>Dong, Qiong</au><au>Yan, Rong</au><au>Zhou, Lin</au><au>Zhan, Ce</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical modeling and experimental validation of residual stress in micro-end-milling</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>87</volume><issue>9-12</issue><spage>3411</spage><epage>3424</epage><pages>3411-3424</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Micro-milling is widely used in aerospace and precision optical part manufacturing. Residual stress is an important index of surface integrity, which signally affects the performance of the micro-parts. This paper presents an analytical model to predict micro-milling residual stresses considering tool edge radius, material strengthening effects, and initial stress. A micro-milling cutting force prediction model is proposed, in which tool edge radius and material strengthening effects are taken into account. The imaginary heat source is utilized to estimate the temperature distribution in the workpiece. This model considers the prediction results of cutting force and temperature as thermomechanical loads experienced by the workpiece. Also, the effect of initial stress is taken into account during the estimation of residual stresses. After loading, unloading, and stresses release, the results of residual stresses in micro-milling are finally obtained. Both the micro-milling cutting force and residual stresses prediction results are validated by NAK80 steel on a three-axis ultra-precision machine. The predicted results capture the experiment results well in terms of distribution and value. Finally, the model is analyzed and discussed. The influences of tool edge radius, rake angle, feed per tooth, and spindle speed on residual stresses are preliminarily explored.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-016-8697-y</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2016-12, Vol.87 (9-12), p.3411-3424 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2262295106 |
source | Springer Nature - Complete Springer Journals |
subjects | CAE) and Design Computer-Aided Engineering (CAD Cutting force Cutting parameters End milling Engineering Industrial and Production Engineering Initial stresses Mathematical models Mechanical Engineering Media Management Milling (machining) Original Article Prediction models Rake angle Residual stress Strengthening Temperature distribution Three axis Workpieces |
title | Analytical modeling and experimental validation of residual stress in micro-end-milling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20modeling%20and%20experimental%20validation%20of%20residual%20stress%20in%20micro-end-milling&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Peng,%20F.%20Y.&rft.date=2016-12-01&rft.volume=87&rft.issue=9-12&rft.spage=3411&rft.epage=3424&rft.pages=3411-3424&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-016-8697-y&rft_dat=%3Cproquest_cross%3E1880833861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262295106&rft_id=info:pmid/&rfr_iscdi=true |