Analytical modeling and experimental validation of residual stress in micro-end-milling

Micro-milling is widely used in aerospace and precision optical part manufacturing. Residual stress is an important index of surface integrity, which signally affects the performance of the micro-parts. This paper presents an analytical model to predict micro-milling residual stresses considering to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2016-12, Vol.87 (9-12), p.3411-3424
Hauptverfasser: Peng, F. Y., Dong, Qiong, Yan, Rong, Zhou, Lin, Zhan, Ce
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3424
container_issue 9-12
container_start_page 3411
container_title International journal of advanced manufacturing technology
container_volume 87
creator Peng, F. Y.
Dong, Qiong
Yan, Rong
Zhou, Lin
Zhan, Ce
description Micro-milling is widely used in aerospace and precision optical part manufacturing. Residual stress is an important index of surface integrity, which signally affects the performance of the micro-parts. This paper presents an analytical model to predict micro-milling residual stresses considering tool edge radius, material strengthening effects, and initial stress. A micro-milling cutting force prediction model is proposed, in which tool edge radius and material strengthening effects are taken into account. The imaginary heat source is utilized to estimate the temperature distribution in the workpiece. This model considers the prediction results of cutting force and temperature as thermomechanical loads experienced by the workpiece. Also, the effect of initial stress is taken into account during the estimation of residual stresses. After loading, unloading, and stresses release, the results of residual stresses in micro-milling are finally obtained. Both the micro-milling cutting force and residual stresses prediction results are validated by NAK80 steel on a three-axis ultra-precision machine. The predicted results capture the experiment results well in terms of distribution and value. Finally, the model is analyzed and discussed. The influences of tool edge radius, rake angle, feed per tooth, and spindle speed on residual stresses are preliminarily explored.
doi_str_mv 10.1007/s00170-016-8697-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262295106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880833861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-5060b1480b7873ad968cf0e2c1f9a71f2a44a3f428ef71af936c70a748b7dc333</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuC5-hMkibZYyl-QcGL4jGku0lJ2c3WzVbcf2_KevCipwmT531hHkKuEW4RQN0lAFRAASXVslR0PCEzFJxTDrg4JTNgUlOupD4nFyntMi1R6hl5X0bbjEOobFO0Xe2aELeFjXXhvvauD62LQ_75tE2o7RC6WHS-6F0K9SGv05CfqQixaEPVd9TFmrahOXZckjNvm-SufuacvD3cv66e6Prl8Xm1XNOKCzHQBUjYoNCwUVpxW5dSVx4cq9CXVqFnVgjLvWDaeYXWl1xWCqwSeqPqinM-JzdT777vPg4uDWbXHfp8UzKMScbKBYL8j0KtQXOuJWYKJyrfklLvvNlnA7YfDYI5WjaTZZPlmaNlM-YMmzIps3Hr-l_Nf4a-Ac9Zf9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262295106</pqid></control><display><type>article</type><title>Analytical modeling and experimental validation of residual stress in micro-end-milling</title><source>Springer Nature - Complete Springer Journals</source><creator>Peng, F. Y. ; Dong, Qiong ; Yan, Rong ; Zhou, Lin ; Zhan, Ce</creator><creatorcontrib>Peng, F. Y. ; Dong, Qiong ; Yan, Rong ; Zhou, Lin ; Zhan, Ce</creatorcontrib><description>Micro-milling is widely used in aerospace and precision optical part manufacturing. Residual stress is an important index of surface integrity, which signally affects the performance of the micro-parts. This paper presents an analytical model to predict micro-milling residual stresses considering tool edge radius, material strengthening effects, and initial stress. A micro-milling cutting force prediction model is proposed, in which tool edge radius and material strengthening effects are taken into account. The imaginary heat source is utilized to estimate the temperature distribution in the workpiece. This model considers the prediction results of cutting force and temperature as thermomechanical loads experienced by the workpiece. Also, the effect of initial stress is taken into account during the estimation of residual stresses. After loading, unloading, and stresses release, the results of residual stresses in micro-milling are finally obtained. Both the micro-milling cutting force and residual stresses prediction results are validated by NAK80 steel on a three-axis ultra-precision machine. The predicted results capture the experiment results well in terms of distribution and value. Finally, the model is analyzed and discussed. The influences of tool edge radius, rake angle, feed per tooth, and spindle speed on residual stresses are preliminarily explored.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-016-8697-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Computer-Aided Engineering (CAD ; Cutting force ; Cutting parameters ; End milling ; Engineering ; Industrial and Production Engineering ; Initial stresses ; Mathematical models ; Mechanical Engineering ; Media Management ; Milling (machining) ; Original Article ; Prediction models ; Rake angle ; Residual stress ; Strengthening ; Temperature distribution ; Three axis ; Workpieces</subject><ispartof>International journal of advanced manufacturing technology, 2016-12, Vol.87 (9-12), p.3411-3424</ispartof><rights>Springer-Verlag London 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-5060b1480b7873ad968cf0e2c1f9a71f2a44a3f428ef71af936c70a748b7dc333</citedby><cites>FETCH-LOGICAL-c344t-5060b1480b7873ad968cf0e2c1f9a71f2a44a3f428ef71af936c70a748b7dc333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-016-8697-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-016-8697-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Peng, F. Y.</creatorcontrib><creatorcontrib>Dong, Qiong</creatorcontrib><creatorcontrib>Yan, Rong</creatorcontrib><creatorcontrib>Zhou, Lin</creatorcontrib><creatorcontrib>Zhan, Ce</creatorcontrib><title>Analytical modeling and experimental validation of residual stress in micro-end-milling</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Micro-milling is widely used in aerospace and precision optical part manufacturing. Residual stress is an important index of surface integrity, which signally affects the performance of the micro-parts. This paper presents an analytical model to predict micro-milling residual stresses considering tool edge radius, material strengthening effects, and initial stress. A micro-milling cutting force prediction model is proposed, in which tool edge radius and material strengthening effects are taken into account. The imaginary heat source is utilized to estimate the temperature distribution in the workpiece. This model considers the prediction results of cutting force and temperature as thermomechanical loads experienced by the workpiece. Also, the effect of initial stress is taken into account during the estimation of residual stresses. After loading, unloading, and stresses release, the results of residual stresses in micro-milling are finally obtained. Both the micro-milling cutting force and residual stresses prediction results are validated by NAK80 steel on a three-axis ultra-precision machine. The predicted results capture the experiment results well in terms of distribution and value. Finally, the model is analyzed and discussed. The influences of tool edge radius, rake angle, feed per tooth, and spindle speed on residual stresses are preliminarily explored.</description><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cutting force</subject><subject>Cutting parameters</subject><subject>End milling</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Initial stresses</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Milling (machining)</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Rake angle</subject><subject>Residual stress</subject><subject>Strengthening</subject><subject>Temperature distribution</subject><subject>Three axis</subject><subject>Workpieces</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_wNuC5-hMkibZYyl-QcGL4jGku0lJ2c3WzVbcf2_KevCipwmT531hHkKuEW4RQN0lAFRAASXVslR0PCEzFJxTDrg4JTNgUlOupD4nFyntMi1R6hl5X0bbjEOobFO0Xe2aELeFjXXhvvauD62LQ_75tE2o7RC6WHS-6F0K9SGv05CfqQixaEPVd9TFmrahOXZckjNvm-SufuacvD3cv66e6Prl8Xm1XNOKCzHQBUjYoNCwUVpxW5dSVx4cq9CXVqFnVgjLvWDaeYXWl1xWCqwSeqPqinM-JzdT777vPg4uDWbXHfp8UzKMScbKBYL8j0KtQXOuJWYKJyrfklLvvNlnA7YfDYI5WjaTZZPlmaNlM-YMmzIps3Hr-l_Nf4a-Ac9Zf9g</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Peng, F. Y.</creator><creator>Dong, Qiong</creator><creator>Yan, Rong</creator><creator>Zhou, Lin</creator><creator>Zhan, Ce</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161201</creationdate><title>Analytical modeling and experimental validation of residual stress in micro-end-milling</title><author>Peng, F. Y. ; Dong, Qiong ; Yan, Rong ; Zhou, Lin ; Zhan, Ce</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-5060b1480b7873ad968cf0e2c1f9a71f2a44a3f428ef71af936c70a748b7dc333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cutting force</topic><topic>Cutting parameters</topic><topic>End milling</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Initial stresses</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Milling (machining)</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Rake angle</topic><topic>Residual stress</topic><topic>Strengthening</topic><topic>Temperature distribution</topic><topic>Three axis</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, F. Y.</creatorcontrib><creatorcontrib>Dong, Qiong</creatorcontrib><creatorcontrib>Yan, Rong</creatorcontrib><creatorcontrib>Zhou, Lin</creatorcontrib><creatorcontrib>Zhan, Ce</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, F. Y.</au><au>Dong, Qiong</au><au>Yan, Rong</au><au>Zhou, Lin</au><au>Zhan, Ce</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical modeling and experimental validation of residual stress in micro-end-milling</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>87</volume><issue>9-12</issue><spage>3411</spage><epage>3424</epage><pages>3411-3424</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Micro-milling is widely used in aerospace and precision optical part manufacturing. Residual stress is an important index of surface integrity, which signally affects the performance of the micro-parts. This paper presents an analytical model to predict micro-milling residual stresses considering tool edge radius, material strengthening effects, and initial stress. A micro-milling cutting force prediction model is proposed, in which tool edge radius and material strengthening effects are taken into account. The imaginary heat source is utilized to estimate the temperature distribution in the workpiece. This model considers the prediction results of cutting force and temperature as thermomechanical loads experienced by the workpiece. Also, the effect of initial stress is taken into account during the estimation of residual stresses. After loading, unloading, and stresses release, the results of residual stresses in micro-milling are finally obtained. Both the micro-milling cutting force and residual stresses prediction results are validated by NAK80 steel on a three-axis ultra-precision machine. The predicted results capture the experiment results well in terms of distribution and value. Finally, the model is analyzed and discussed. The influences of tool edge radius, rake angle, feed per tooth, and spindle speed on residual stresses are preliminarily explored.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-016-8697-y</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2016-12, Vol.87 (9-12), p.3411-3424
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262295106
source Springer Nature - Complete Springer Journals
subjects CAE) and Design
Computer-Aided Engineering (CAD
Cutting force
Cutting parameters
End milling
Engineering
Industrial and Production Engineering
Initial stresses
Mathematical models
Mechanical Engineering
Media Management
Milling (machining)
Original Article
Prediction models
Rake angle
Residual stress
Strengthening
Temperature distribution
Three axis
Workpieces
title Analytical modeling and experimental validation of residual stress in micro-end-milling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20modeling%20and%20experimental%20validation%20of%20residual%20stress%20in%20micro-end-milling&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Peng,%20F.%20Y.&rft.date=2016-12-01&rft.volume=87&rft.issue=9-12&rft.spage=3411&rft.epage=3424&rft.pages=3411-3424&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-016-8697-y&rft_dat=%3Cproquest_cross%3E1880833861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262295106&rft_id=info:pmid/&rfr_iscdi=true