Pattern recognition in audible sound energy emissions of AISI 52100 hardened steel turning: a MFCC-based approach

The main objective in machining processes is to produce a high-quality surface finish which, however, can be measured only at the end of the machining cycle. A more preferable method would be to monitor the quality during the cycle, what result a real-time, low-cost, and accurate monitoring method t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2017-02, Vol.88 (5-8), p.1383-1392
Hauptverfasser: Frigieri, Edielson P., Brito, Tarcisio G., Ynoguti, Carlos A., Paiva, Anderson P., Ferreira, João R., Balestrassi, Pedro P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1392
container_issue 5-8
container_start_page 1383
container_title International journal of advanced manufacturing technology
container_volume 88
creator Frigieri, Edielson P.
Brito, Tarcisio G.
Ynoguti, Carlos A.
Paiva, Anderson P.
Ferreira, João R.
Balestrassi, Pedro P.
description The main objective in machining processes is to produce a high-quality surface finish which, however, can be measured only at the end of the machining cycle. A more preferable method would be to monitor the quality during the cycle, what result a real-time, low-cost, and accurate monitoring method that can dynamically adjust the machining parameters and keep the target surface finish. Motivated by this premise, results of investigation on the relationship between emitted sound signal and surface finish during turning process are reported in this paper. Through experiments with AISI 52100 hardened steel, this work shows that such a correlation does exist presenting strong evidences that Mel-Frequency Cepstral Coefficients, extracted from sound energy, can detect different surface roughness levels, what makes it a promising feature for real-time process quality monitoring methods.
doi_str_mv 10.1007/s00170-016-8748-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262278410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880792528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-a5ba3e1a26c23c611acf673f5cd6aeb49eb4b028ba6eb55ffcca9ffc16efbe2b3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwAdgsMRv8J3FctiqiUKkIJGC2bOeSpmqd1k6GfntchYEFhrsb7vfunR5Ct4zeM0qLh0gpKyihTBJVZIpkZ2jCMiGIoCw_RxPKpSKikOoSXcW4SbRkUk3Q4d30PQSPA7iu8W3fdh63Hpuhau0WcOwGX2HwEJojhl0bYwIi7mo8X34scc6TO16bUCWkwrEH2OJ-CL71zSM2-HVRlsSamHZmvw-dcetrdFGbbYSbnzlFX4unz_KFrN6el-V8RZzIsp6Y3BoBzHDpuHCSMeNqWYg6d5U0YLNZKku5skaCzfO6ds7MUmcSagvciim6G-8m28MAsdebLj2WLDXnkvNCZYz-RzGlaDHjOVeJYiPlQhdjgFrvQ7sz4agZ1af89Zi_TrHqU_46Sxo-amJifQPh1-U_Rd_RI4hx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262278410</pqid></control><display><type>article</type><title>Pattern recognition in audible sound energy emissions of AISI 52100 hardened steel turning: a MFCC-based approach</title><source>Springer Nature</source><creator>Frigieri, Edielson P. ; Brito, Tarcisio G. ; Ynoguti, Carlos A. ; Paiva, Anderson P. ; Ferreira, João R. ; Balestrassi, Pedro P.</creator><creatorcontrib>Frigieri, Edielson P. ; Brito, Tarcisio G. ; Ynoguti, Carlos A. ; Paiva, Anderson P. ; Ferreira, João R. ; Balestrassi, Pedro P.</creatorcontrib><description>The main objective in machining processes is to produce a high-quality surface finish which, however, can be measured only at the end of the machining cycle. A more preferable method would be to monitor the quality during the cycle, what result a real-time, low-cost, and accurate monitoring method that can dynamically adjust the machining parameters and keep the target surface finish. Motivated by this premise, results of investigation on the relationship between emitted sound signal and surface finish during turning process are reported in this paper. Through experiments with AISI 52100 hardened steel, this work shows that such a correlation does exist presenting strong evidences that Mel-Frequency Cepstral Coefficients, extracted from sound energy, can detect different surface roughness levels, what makes it a promising feature for real-time process quality monitoring methods.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-016-8748-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Bearing steels ; CAE) and Design ; Chromium steels ; Computer-Aided Engineering (CAD ; Engineering ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Monitoring ; Original Article ; Pattern recognition ; Process parameters ; Real time ; Signal processing ; Sound ; Surface finish ; Surface roughness ; Turning (machining)</subject><ispartof>International journal of advanced manufacturing technology, 2017-02, Vol.88 (5-8), p.1383-1392</ispartof><rights>Springer-Verlag London 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-a5ba3e1a26c23c611acf673f5cd6aeb49eb4b028ba6eb55ffcca9ffc16efbe2b3</citedby><cites>FETCH-LOGICAL-c344t-a5ba3e1a26c23c611acf673f5cd6aeb49eb4b028ba6eb55ffcca9ffc16efbe2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-016-8748-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-016-8748-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Frigieri, Edielson P.</creatorcontrib><creatorcontrib>Brito, Tarcisio G.</creatorcontrib><creatorcontrib>Ynoguti, Carlos A.</creatorcontrib><creatorcontrib>Paiva, Anderson P.</creatorcontrib><creatorcontrib>Ferreira, João R.</creatorcontrib><creatorcontrib>Balestrassi, Pedro P.</creatorcontrib><title>Pattern recognition in audible sound energy emissions of AISI 52100 hardened steel turning: a MFCC-based approach</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The main objective in machining processes is to produce a high-quality surface finish which, however, can be measured only at the end of the machining cycle. A more preferable method would be to monitor the quality during the cycle, what result a real-time, low-cost, and accurate monitoring method that can dynamically adjust the machining parameters and keep the target surface finish. Motivated by this premise, results of investigation on the relationship between emitted sound signal and surface finish during turning process are reported in this paper. Through experiments with AISI 52100 hardened steel, this work shows that such a correlation does exist presenting strong evidences that Mel-Frequency Cepstral Coefficients, extracted from sound energy, can detect different surface roughness levels, what makes it a promising feature for real-time process quality monitoring methods.</description><subject>Bearing steels</subject><subject>CAE) and Design</subject><subject>Chromium steels</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Monitoring</subject><subject>Original Article</subject><subject>Pattern recognition</subject><subject>Process parameters</subject><subject>Real time</subject><subject>Signal processing</subject><subject>Sound</subject><subject>Surface finish</subject><subject>Surface roughness</subject><subject>Turning (machining)</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kD9PwzAQxS0EEqXwAdgsMRv8J3FctiqiUKkIJGC2bOeSpmqd1k6GfntchYEFhrsb7vfunR5Ct4zeM0qLh0gpKyihTBJVZIpkZ2jCMiGIoCw_RxPKpSKikOoSXcW4SbRkUk3Q4d30PQSPA7iu8W3fdh63Hpuhau0WcOwGX2HwEJojhl0bYwIi7mo8X34scc6TO16bUCWkwrEH2OJ-CL71zSM2-HVRlsSamHZmvw-dcetrdFGbbYSbnzlFX4unz_KFrN6el-V8RZzIsp6Y3BoBzHDpuHCSMeNqWYg6d5U0YLNZKku5skaCzfO6ds7MUmcSagvciim6G-8m28MAsdebLj2WLDXnkvNCZYz-RzGlaDHjOVeJYiPlQhdjgFrvQ7sz4agZ1af89Zi_TrHqU_46Sxo-amJifQPh1-U_Rd_RI4hx</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Frigieri, Edielson P.</creator><creator>Brito, Tarcisio G.</creator><creator>Ynoguti, Carlos A.</creator><creator>Paiva, Anderson P.</creator><creator>Ferreira, João R.</creator><creator>Balestrassi, Pedro P.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170201</creationdate><title>Pattern recognition in audible sound energy emissions of AISI 52100 hardened steel turning: a MFCC-based approach</title><author>Frigieri, Edielson P. ; Brito, Tarcisio G. ; Ynoguti, Carlos A. ; Paiva, Anderson P. ; Ferreira, João R. ; Balestrassi, Pedro P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-a5ba3e1a26c23c611acf673f5cd6aeb49eb4b028ba6eb55ffcca9ffc16efbe2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bearing steels</topic><topic>CAE) and Design</topic><topic>Chromium steels</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Monitoring</topic><topic>Original Article</topic><topic>Pattern recognition</topic><topic>Process parameters</topic><topic>Real time</topic><topic>Signal processing</topic><topic>Sound</topic><topic>Surface finish</topic><topic>Surface roughness</topic><topic>Turning (machining)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frigieri, Edielson P.</creatorcontrib><creatorcontrib>Brito, Tarcisio G.</creatorcontrib><creatorcontrib>Ynoguti, Carlos A.</creatorcontrib><creatorcontrib>Paiva, Anderson P.</creatorcontrib><creatorcontrib>Ferreira, João R.</creatorcontrib><creatorcontrib>Balestrassi, Pedro P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frigieri, Edielson P.</au><au>Brito, Tarcisio G.</au><au>Ynoguti, Carlos A.</au><au>Paiva, Anderson P.</au><au>Ferreira, João R.</au><au>Balestrassi, Pedro P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern recognition in audible sound energy emissions of AISI 52100 hardened steel turning: a MFCC-based approach</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>88</volume><issue>5-8</issue><spage>1383</spage><epage>1392</epage><pages>1383-1392</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The main objective in machining processes is to produce a high-quality surface finish which, however, can be measured only at the end of the machining cycle. A more preferable method would be to monitor the quality during the cycle, what result a real-time, low-cost, and accurate monitoring method that can dynamically adjust the machining parameters and keep the target surface finish. Motivated by this premise, results of investigation on the relationship between emitted sound signal and surface finish during turning process are reported in this paper. Through experiments with AISI 52100 hardened steel, this work shows that such a correlation does exist presenting strong evidences that Mel-Frequency Cepstral Coefficients, extracted from sound energy, can detect different surface roughness levels, what makes it a promising feature for real-time process quality monitoring methods.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-016-8748-4</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2017-02, Vol.88 (5-8), p.1383-1392
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262278410
source Springer Nature
subjects Bearing steels
CAE) and Design
Chromium steels
Computer-Aided Engineering (CAD
Engineering
Industrial and Production Engineering
Mechanical Engineering
Media Management
Monitoring
Original Article
Pattern recognition
Process parameters
Real time
Signal processing
Sound
Surface finish
Surface roughness
Turning (machining)
title Pattern recognition in audible sound energy emissions of AISI 52100 hardened steel turning: a MFCC-based approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20recognition%20in%20audible%20sound%20energy%20emissions%20of%20AISI%2052100%20hardened%20steel%20turning:%20a%20MFCC-based%20approach&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Frigieri,%20Edielson%20P.&rft.date=2017-02-01&rft.volume=88&rft.issue=5-8&rft.spage=1383&rft.epage=1392&rft.pages=1383-1392&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-016-8748-4&rft_dat=%3Cproquest_cross%3E1880792528%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262278410&rft_id=info:pmid/&rfr_iscdi=true