Quality control using a multivariate injection molding sensor

Injection molding part quality is modeled using a multivariate sensor. Melt pressure and temperature are respectively obtained through the incorporation of a piezo-ceramic element and infrared thermopile within the sensor head. Melt velocity is derived from the transient response of the melt tempera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2015-06, Vol.78 (9-12), p.1381-1391
Hauptverfasser: Gordon, Guthrie, Kazmer, David O., Tang, Xinyao, Fan, Zhoayan, Gao, Robert X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1391
container_issue 9-12
container_start_page 1381
container_title International journal of advanced manufacturing technology
container_volume 78
creator Gordon, Guthrie
Kazmer, David O.
Tang, Xinyao
Fan, Zhoayan
Gao, Robert X.
description Injection molding part quality is modeled using a multivariate sensor. Melt pressure and temperature are respectively obtained through the incorporation of a piezo-ceramic element and infrared thermopile within the sensor head. Melt velocity is derived from the transient response of the melt temperature as the polymer melt flows across the sensor’s lens. The apparent melt viscosity is then derived based on the melt velocity and the time derivative of the increasing melt pressure given the cavity thickness. Quality metrics taken into account are finished part thickness, width, length, weight, and tensile strength. A 12-run, blocked half-fractional design of experiments was performed to derive predictive models for part mass, dimensions, and structural properties. Several predictive part quality models were created using data from the machine, a suite of commercial sensors, the multivariate sensor, and combinations thereof. The results indicate that multiple orthogonal streams of process data yield higher-fidelity models with coefficients of determination approaching one. Furthermore, best subset analysis indicates that the most important process data are gathered from in-mold sensors, where the acquired information is closest to the states of the polymer forming the final product.
doi_str_mv 10.1007/s00170-014-6706-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262263570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262263570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-c5e7749aeb9311c175e4e88a0ab02339daad27cc2830a3b80fc870b6f076b2c33</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoWEd_gLuC6-hL0iaZhQsZ_IIBEXQd0kw6ZOgkY5IK8-9NqeBKeHA3594HB6FrArcEQNwlACIAA2kwF8AxP0EVaRjDDEh7iiqgXGImuDxHFyntCs0JlxW6fx_14PKxNsHnGIZ6TM5va13vxyG7bx2dzrZ2fmdNdsHX-zBsJiBZn0K8RGe9HpK9-s0F-nx6_Fi94PXb8-vqYY0Nkzxj01ohmqW23ZIRYohobWOl1KA7oIwtN1pvqDCGSgaadRJ6IwV0vAfBO2oYW6CbefcQw9doU1a7MEZfXipKeTnWCigUmSkTQ0rR9uoQ3V7HoyKgJktqtqSKJTVZUrx06NxJhfVbG_-W_y_9AP5haf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262263570</pqid></control><display><type>article</type><title>Quality control using a multivariate injection molding sensor</title><source>SpringerNature Journals</source><creator>Gordon, Guthrie ; Kazmer, David O. ; Tang, Xinyao ; Fan, Zhoayan ; Gao, Robert X.</creator><creatorcontrib>Gordon, Guthrie ; Kazmer, David O. ; Tang, Xinyao ; Fan, Zhoayan ; Gao, Robert X.</creatorcontrib><description>Injection molding part quality is modeled using a multivariate sensor. Melt pressure and temperature are respectively obtained through the incorporation of a piezo-ceramic element and infrared thermopile within the sensor head. Melt velocity is derived from the transient response of the melt temperature as the polymer melt flows across the sensor’s lens. The apparent melt viscosity is then derived based on the melt velocity and the time derivative of the increasing melt pressure given the cavity thickness. Quality metrics taken into account are finished part thickness, width, length, weight, and tensile strength. A 12-run, blocked half-fractional design of experiments was performed to derive predictive models for part mass, dimensions, and structural properties. Several predictive part quality models were created using data from the machine, a suite of commercial sensors, the multivariate sensor, and combinations thereof. The results indicate that multiple orthogonal streams of process data yield higher-fidelity models with coefficients of determination approaching one. Furthermore, best subset analysis indicates that the most important process data are gathered from in-mold sensors, where the acquired information is closest to the states of the polymer forming the final product.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-014-6706-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Computer-Aided Engineering (CAD ; Data processing ; Design of experiments ; Engineering ; Industrial and Production Engineering ; Infrared detectors ; Injection molding ; Mechanical Engineering ; Media Management ; Melt temperature ; Multivariate analysis ; Original Article ; Performance prediction ; Polymer melts ; Polymers ; Quality control ; Sensors ; Thermopiles ; Thickness</subject><ispartof>International journal of advanced manufacturing technology, 2015-06, Vol.78 (9-12), p.1381-1391</ispartof><rights>Springer-Verlag London 2015</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-c5e7749aeb9311c175e4e88a0ab02339daad27cc2830a3b80fc870b6f076b2c33</citedby><cites>FETCH-LOGICAL-c386t-c5e7749aeb9311c175e4e88a0ab02339daad27cc2830a3b80fc870b6f076b2c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-014-6706-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-014-6706-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Gordon, Guthrie</creatorcontrib><creatorcontrib>Kazmer, David O.</creatorcontrib><creatorcontrib>Tang, Xinyao</creatorcontrib><creatorcontrib>Fan, Zhoayan</creatorcontrib><creatorcontrib>Gao, Robert X.</creatorcontrib><title>Quality control using a multivariate injection molding sensor</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Injection molding part quality is modeled using a multivariate sensor. Melt pressure and temperature are respectively obtained through the incorporation of a piezo-ceramic element and infrared thermopile within the sensor head. Melt velocity is derived from the transient response of the melt temperature as the polymer melt flows across the sensor’s lens. The apparent melt viscosity is then derived based on the melt velocity and the time derivative of the increasing melt pressure given the cavity thickness. Quality metrics taken into account are finished part thickness, width, length, weight, and tensile strength. A 12-run, blocked half-fractional design of experiments was performed to derive predictive models for part mass, dimensions, and structural properties. Several predictive part quality models were created using data from the machine, a suite of commercial sensors, the multivariate sensor, and combinations thereof. The results indicate that multiple orthogonal streams of process data yield higher-fidelity models with coefficients of determination approaching one. Furthermore, best subset analysis indicates that the most important process data are gathered from in-mold sensors, where the acquired information is closest to the states of the polymer forming the final product.</description><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Data processing</subject><subject>Design of experiments</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Infrared detectors</subject><subject>Injection molding</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Melt temperature</subject><subject>Multivariate analysis</subject><subject>Original Article</subject><subject>Performance prediction</subject><subject>Polymer melts</subject><subject>Polymers</subject><subject>Quality control</subject><subject>Sensors</subject><subject>Thermopiles</subject><subject>Thickness</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LxDAURYMoWEd_gLuC6-hL0iaZhQsZ_IIBEXQd0kw6ZOgkY5IK8-9NqeBKeHA3594HB6FrArcEQNwlACIAA2kwF8AxP0EVaRjDDEh7iiqgXGImuDxHFyntCs0JlxW6fx_14PKxNsHnGIZ6TM5va13vxyG7bx2dzrZ2fmdNdsHX-zBsJiBZn0K8RGe9HpK9-s0F-nx6_Fi94PXb8-vqYY0Nkzxj01ohmqW23ZIRYohobWOl1KA7oIwtN1pvqDCGSgaadRJ6IwV0vAfBO2oYW6CbefcQw9doU1a7MEZfXipKeTnWCigUmSkTQ0rR9uoQ3V7HoyKgJktqtqSKJTVZUrx06NxJhfVbG_-W_y_9AP5haf0</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Gordon, Guthrie</creator><creator>Kazmer, David O.</creator><creator>Tang, Xinyao</creator><creator>Fan, Zhoayan</creator><creator>Gao, Robert X.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150601</creationdate><title>Quality control using a multivariate injection molding sensor</title><author>Gordon, Guthrie ; Kazmer, David O. ; Tang, Xinyao ; Fan, Zhoayan ; Gao, Robert X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-c5e7749aeb9311c175e4e88a0ab02339daad27cc2830a3b80fc870b6f076b2c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Data processing</topic><topic>Design of experiments</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Infrared detectors</topic><topic>Injection molding</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Melt temperature</topic><topic>Multivariate analysis</topic><topic>Original Article</topic><topic>Performance prediction</topic><topic>Polymer melts</topic><topic>Polymers</topic><topic>Quality control</topic><topic>Sensors</topic><topic>Thermopiles</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gordon, Guthrie</creatorcontrib><creatorcontrib>Kazmer, David O.</creatorcontrib><creatorcontrib>Tang, Xinyao</creatorcontrib><creatorcontrib>Fan, Zhoayan</creatorcontrib><creatorcontrib>Gao, Robert X.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gordon, Guthrie</au><au>Kazmer, David O.</au><au>Tang, Xinyao</au><au>Fan, Zhoayan</au><au>Gao, Robert X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quality control using a multivariate injection molding sensor</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>78</volume><issue>9-12</issue><spage>1381</spage><epage>1391</epage><pages>1381-1391</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Injection molding part quality is modeled using a multivariate sensor. Melt pressure and temperature are respectively obtained through the incorporation of a piezo-ceramic element and infrared thermopile within the sensor head. Melt velocity is derived from the transient response of the melt temperature as the polymer melt flows across the sensor’s lens. The apparent melt viscosity is then derived based on the melt velocity and the time derivative of the increasing melt pressure given the cavity thickness. Quality metrics taken into account are finished part thickness, width, length, weight, and tensile strength. A 12-run, blocked half-fractional design of experiments was performed to derive predictive models for part mass, dimensions, and structural properties. Several predictive part quality models were created using data from the machine, a suite of commercial sensors, the multivariate sensor, and combinations thereof. The results indicate that multiple orthogonal streams of process data yield higher-fidelity models with coefficients of determination approaching one. Furthermore, best subset analysis indicates that the most important process data are gathered from in-mold sensors, where the acquired information is closest to the states of the polymer forming the final product.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-014-6706-6</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2015-06, Vol.78 (9-12), p.1381-1391
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262263570
source SpringerNature Journals
subjects CAE) and Design
Computer-Aided Engineering (CAD
Data processing
Design of experiments
Engineering
Industrial and Production Engineering
Infrared detectors
Injection molding
Mechanical Engineering
Media Management
Melt temperature
Multivariate analysis
Original Article
Performance prediction
Polymer melts
Polymers
Quality control
Sensors
Thermopiles
Thickness
title Quality control using a multivariate injection molding sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A05%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quality%20control%20using%20a%20multivariate%20injection%20molding%20sensor&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Gordon,%20Guthrie&rft.date=2015-06-01&rft.volume=78&rft.issue=9-12&rft.spage=1381&rft.epage=1391&rft.pages=1381-1391&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-014-6706-6&rft_dat=%3Cproquest_cross%3E2262263570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262263570&rft_id=info:pmid/&rfr_iscdi=true