Quality control using a multivariate injection molding sensor
Injection molding part quality is modeled using a multivariate sensor. Melt pressure and temperature are respectively obtained through the incorporation of a piezo-ceramic element and infrared thermopile within the sensor head. Melt velocity is derived from the transient response of the melt tempera...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2015-06, Vol.78 (9-12), p.1381-1391 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1391 |
---|---|
container_issue | 9-12 |
container_start_page | 1381 |
container_title | International journal of advanced manufacturing technology |
container_volume | 78 |
creator | Gordon, Guthrie Kazmer, David O. Tang, Xinyao Fan, Zhoayan Gao, Robert X. |
description | Injection molding part quality is modeled using a multivariate sensor. Melt pressure and temperature are respectively obtained through the incorporation of a piezo-ceramic element and infrared thermopile within the sensor head. Melt velocity is derived from the transient response of the melt temperature as the polymer melt flows across the sensor’s lens. The apparent melt viscosity is then derived based on the melt velocity and the time derivative of the increasing melt pressure given the cavity thickness. Quality metrics taken into account are finished part thickness, width, length, weight, and tensile strength. A 12-run, blocked half-fractional design of experiments was performed to derive predictive models for part mass, dimensions, and structural properties. Several predictive part quality models were created using data from the machine, a suite of commercial sensors, the multivariate sensor, and combinations thereof. The results indicate that multiple orthogonal streams of process data yield higher-fidelity models with coefficients of determination approaching one. Furthermore, best subset analysis indicates that the most important process data are gathered from in-mold sensors, where the acquired information is closest to the states of the polymer forming the final product. |
doi_str_mv | 10.1007/s00170-014-6706-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262263570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262263570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-c5e7749aeb9311c175e4e88a0ab02339daad27cc2830a3b80fc870b6f076b2c33</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoWEd_gLuC6-hL0iaZhQsZ_IIBEXQd0kw6ZOgkY5IK8-9NqeBKeHA3594HB6FrArcEQNwlACIAA2kwF8AxP0EVaRjDDEh7iiqgXGImuDxHFyntCs0JlxW6fx_14PKxNsHnGIZ6TM5va13vxyG7bx2dzrZ2fmdNdsHX-zBsJiBZn0K8RGe9HpK9-s0F-nx6_Fi94PXb8-vqYY0Nkzxj01ohmqW23ZIRYohobWOl1KA7oIwtN1pvqDCGSgaadRJ6IwV0vAfBO2oYW6CbefcQw9doU1a7MEZfXipKeTnWCigUmSkTQ0rR9uoQ3V7HoyKgJktqtqSKJTVZUrx06NxJhfVbG_-W_y_9AP5haf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262263570</pqid></control><display><type>article</type><title>Quality control using a multivariate injection molding sensor</title><source>SpringerNature Journals</source><creator>Gordon, Guthrie ; Kazmer, David O. ; Tang, Xinyao ; Fan, Zhoayan ; Gao, Robert X.</creator><creatorcontrib>Gordon, Guthrie ; Kazmer, David O. ; Tang, Xinyao ; Fan, Zhoayan ; Gao, Robert X.</creatorcontrib><description>Injection molding part quality is modeled using a multivariate sensor. Melt pressure and temperature are respectively obtained through the incorporation of a piezo-ceramic element and infrared thermopile within the sensor head. Melt velocity is derived from the transient response of the melt temperature as the polymer melt flows across the sensor’s lens. The apparent melt viscosity is then derived based on the melt velocity and the time derivative of the increasing melt pressure given the cavity thickness. Quality metrics taken into account are finished part thickness, width, length, weight, and tensile strength. A 12-run, blocked half-fractional design of experiments was performed to derive predictive models for part mass, dimensions, and structural properties. Several predictive part quality models were created using data from the machine, a suite of commercial sensors, the multivariate sensor, and combinations thereof. The results indicate that multiple orthogonal streams of process data yield higher-fidelity models with coefficients of determination approaching one. Furthermore, best subset analysis indicates that the most important process data are gathered from in-mold sensors, where the acquired information is closest to the states of the polymer forming the final product.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-014-6706-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Computer-Aided Engineering (CAD ; Data processing ; Design of experiments ; Engineering ; Industrial and Production Engineering ; Infrared detectors ; Injection molding ; Mechanical Engineering ; Media Management ; Melt temperature ; Multivariate analysis ; Original Article ; Performance prediction ; Polymer melts ; Polymers ; Quality control ; Sensors ; Thermopiles ; Thickness</subject><ispartof>International journal of advanced manufacturing technology, 2015-06, Vol.78 (9-12), p.1381-1391</ispartof><rights>Springer-Verlag London 2015</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-c5e7749aeb9311c175e4e88a0ab02339daad27cc2830a3b80fc870b6f076b2c33</citedby><cites>FETCH-LOGICAL-c386t-c5e7749aeb9311c175e4e88a0ab02339daad27cc2830a3b80fc870b6f076b2c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-014-6706-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-014-6706-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Gordon, Guthrie</creatorcontrib><creatorcontrib>Kazmer, David O.</creatorcontrib><creatorcontrib>Tang, Xinyao</creatorcontrib><creatorcontrib>Fan, Zhoayan</creatorcontrib><creatorcontrib>Gao, Robert X.</creatorcontrib><title>Quality control using a multivariate injection molding sensor</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Injection molding part quality is modeled using a multivariate sensor. Melt pressure and temperature are respectively obtained through the incorporation of a piezo-ceramic element and infrared thermopile within the sensor head. Melt velocity is derived from the transient response of the melt temperature as the polymer melt flows across the sensor’s lens. The apparent melt viscosity is then derived based on the melt velocity and the time derivative of the increasing melt pressure given the cavity thickness. Quality metrics taken into account are finished part thickness, width, length, weight, and tensile strength. A 12-run, blocked half-fractional design of experiments was performed to derive predictive models for part mass, dimensions, and structural properties. Several predictive part quality models were created using data from the machine, a suite of commercial sensors, the multivariate sensor, and combinations thereof. The results indicate that multiple orthogonal streams of process data yield higher-fidelity models with coefficients of determination approaching one. Furthermore, best subset analysis indicates that the most important process data are gathered from in-mold sensors, where the acquired information is closest to the states of the polymer forming the final product.</description><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Data processing</subject><subject>Design of experiments</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Infrared detectors</subject><subject>Injection molding</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Melt temperature</subject><subject>Multivariate analysis</subject><subject>Original Article</subject><subject>Performance prediction</subject><subject>Polymer melts</subject><subject>Polymers</subject><subject>Quality control</subject><subject>Sensors</subject><subject>Thermopiles</subject><subject>Thickness</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LxDAURYMoWEd_gLuC6-hL0iaZhQsZ_IIBEXQd0kw6ZOgkY5IK8-9NqeBKeHA3594HB6FrArcEQNwlACIAA2kwF8AxP0EVaRjDDEh7iiqgXGImuDxHFyntCs0JlxW6fx_14PKxNsHnGIZ6TM5va13vxyG7bx2dzrZ2fmdNdsHX-zBsJiBZn0K8RGe9HpK9-s0F-nx6_Fi94PXb8-vqYY0Nkzxj01ohmqW23ZIRYohobWOl1KA7oIwtN1pvqDCGSgaadRJ6IwV0vAfBO2oYW6CbefcQw9doU1a7MEZfXipKeTnWCigUmSkTQ0rR9uoQ3V7HoyKgJktqtqSKJTVZUrx06NxJhfVbG_-W_y_9AP5haf0</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Gordon, Guthrie</creator><creator>Kazmer, David O.</creator><creator>Tang, Xinyao</creator><creator>Fan, Zhoayan</creator><creator>Gao, Robert X.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150601</creationdate><title>Quality control using a multivariate injection molding sensor</title><author>Gordon, Guthrie ; Kazmer, David O. ; Tang, Xinyao ; Fan, Zhoayan ; Gao, Robert X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-c5e7749aeb9311c175e4e88a0ab02339daad27cc2830a3b80fc870b6f076b2c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Data processing</topic><topic>Design of experiments</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Infrared detectors</topic><topic>Injection molding</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Melt temperature</topic><topic>Multivariate analysis</topic><topic>Original Article</topic><topic>Performance prediction</topic><topic>Polymer melts</topic><topic>Polymers</topic><topic>Quality control</topic><topic>Sensors</topic><topic>Thermopiles</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gordon, Guthrie</creatorcontrib><creatorcontrib>Kazmer, David O.</creatorcontrib><creatorcontrib>Tang, Xinyao</creatorcontrib><creatorcontrib>Fan, Zhoayan</creatorcontrib><creatorcontrib>Gao, Robert X.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gordon, Guthrie</au><au>Kazmer, David O.</au><au>Tang, Xinyao</au><au>Fan, Zhoayan</au><au>Gao, Robert X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quality control using a multivariate injection molding sensor</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>78</volume><issue>9-12</issue><spage>1381</spage><epage>1391</epage><pages>1381-1391</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Injection molding part quality is modeled using a multivariate sensor. Melt pressure and temperature are respectively obtained through the incorporation of a piezo-ceramic element and infrared thermopile within the sensor head. Melt velocity is derived from the transient response of the melt temperature as the polymer melt flows across the sensor’s lens. The apparent melt viscosity is then derived based on the melt velocity and the time derivative of the increasing melt pressure given the cavity thickness. Quality metrics taken into account are finished part thickness, width, length, weight, and tensile strength. A 12-run, blocked half-fractional design of experiments was performed to derive predictive models for part mass, dimensions, and structural properties. Several predictive part quality models were created using data from the machine, a suite of commercial sensors, the multivariate sensor, and combinations thereof. The results indicate that multiple orthogonal streams of process data yield higher-fidelity models with coefficients of determination approaching one. Furthermore, best subset analysis indicates that the most important process data are gathered from in-mold sensors, where the acquired information is closest to the states of the polymer forming the final product.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-014-6706-6</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2015-06, Vol.78 (9-12), p.1381-1391 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2262263570 |
source | SpringerNature Journals |
subjects | CAE) and Design Computer-Aided Engineering (CAD Data processing Design of experiments Engineering Industrial and Production Engineering Infrared detectors Injection molding Mechanical Engineering Media Management Melt temperature Multivariate analysis Original Article Performance prediction Polymer melts Polymers Quality control Sensors Thermopiles Thickness |
title | Quality control using a multivariate injection molding sensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A05%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quality%20control%20using%20a%20multivariate%20injection%20molding%20sensor&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Gordon,%20Guthrie&rft.date=2015-06-01&rft.volume=78&rft.issue=9-12&rft.spage=1381&rft.epage=1391&rft.pages=1381-1391&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-014-6706-6&rft_dat=%3Cproquest_cross%3E2262263570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262263570&rft_id=info:pmid/&rfr_iscdi=true |