Surface roughness modeling using RSM for HSLA steel by coated carbide tools

Surface roughness is the main indicator of surface quality on machined parts. Accurate predictive models for surface roughness help to choose optimum machining parameters, ultimately support to maximize the productivity without any compromise on quality. In this paper, an average surface roughness (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2015-05, Vol.78 (5-8), p.1031-1041
Hauptverfasser: Azam, Muhammad, Jahanzaib, Mirza, Wasim, Ahmad, Hussain, Salman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1041
container_issue 5-8
container_start_page 1031
container_title International journal of advanced manufacturing technology
container_volume 78
creator Azam, Muhammad
Jahanzaib, Mirza
Wasim, Ahmad
Hussain, Salman
description Surface roughness is the main indicator of surface quality on machined parts. Accurate predictive models for surface roughness help to choose optimum machining parameters, ultimately support to maximize the productivity without any compromise on quality. In this paper, an average surface roughness ( R a ) model has been developed for turning high-strength low-alloy steel (AISI 4340 with carbon contents less than 0.3 %) using multilayer coated carbide tools. A series of tests using response surface methodology (RSM) has been employed to develop a relationship between R a and machining parameters (feed, speed, and depth of cut). The feed rate has been observed as the main parameter that influences surface roughness. Contour plots of “feed versus speed” and “feed versus depth of cut” signify that target R a value can be achieved through optimal combination of cutting parameters. The accuracy of proposed model has been confirmed through validation data with average prediction error of 3.38 %.
doi_str_mv 10.1007/s00170-014-6707-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262260623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262260623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-c6e7123818b1ecd46bc5135bf30f0b19a8dda2f4f6779ee8858e6582273111953</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3gOZpJdpP0WIpasSJYPYfd7KS2bDc12T307bvLCp6EYeby_f_AR8gt8HvgXD8kzkFzxiFjSnPN8jMygUxKJjnk52TChTJMamUuyVVKu55WoMyEvK676AuHNIZu891gSnQfKqy3zYZ2adgf6zfqQ6TL9WpOU4tY0_JIXSharKgrYrmtkLYh1OmaXPiiTnjze6fk6-nxc7Fkq_fnl8V8xZw0qmVOoQYhDZgS0FWZKl0OMi-95J6XMCtMVRXCZ15pPUM0JjeociOElgAwy-WU3I29hxh-Okyt3YUuNv1LK4TqhyshewpGysWQUkRvD3G7L-LRAreDMzs6s70zOzizQ7MYM6lnmw3Gv-b_QycF_mz6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262260623</pqid></control><display><type>article</type><title>Surface roughness modeling using RSM for HSLA steel by coated carbide tools</title><source>SpringerLink Journals - AutoHoldings</source><creator>Azam, Muhammad ; Jahanzaib, Mirza ; Wasim, Ahmad ; Hussain, Salman</creator><creatorcontrib>Azam, Muhammad ; Jahanzaib, Mirza ; Wasim, Ahmad ; Hussain, Salman</creatorcontrib><description>Surface roughness is the main indicator of surface quality on machined parts. Accurate predictive models for surface roughness help to choose optimum machining parameters, ultimately support to maximize the productivity without any compromise on quality. In this paper, an average surface roughness ( R a ) model has been developed for turning high-strength low-alloy steel (AISI 4340 with carbon contents less than 0.3 %) using multilayer coated carbide tools. A series of tests using response surface methodology (RSM) has been employed to develop a relationship between R a and machining parameters (feed, speed, and depth of cut). The feed rate has been observed as the main parameter that influences surface roughness. Contour plots of “feed versus speed” and “feed versus depth of cut” signify that target R a value can be achieved through optimal combination of cutting parameters. The accuracy of proposed model has been confirmed through validation data with average prediction error of 3.38 %.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-014-6707-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Carbide tools ; Computer-Aided Engineering (CAD ; Cutting parameters ; Engineering ; Feed rate ; High strength low alloy steels ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Model accuracy ; Multilayers ; Optimization ; Original Article ; Prediction models ; Production planning ; Response surface methodology ; Surface properties ; Surface roughness ; Test procedures ; Tool steels ; Turning (machining)</subject><ispartof>International journal of advanced manufacturing technology, 2015-05, Vol.78 (5-8), p.1031-1041</ispartof><rights>Springer-Verlag London 2014</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-c6e7123818b1ecd46bc5135bf30f0b19a8dda2f4f6779ee8858e6582273111953</citedby><cites>FETCH-LOGICAL-c386t-c6e7123818b1ecd46bc5135bf30f0b19a8dda2f4f6779ee8858e6582273111953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-014-6707-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-014-6707-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Azam, Muhammad</creatorcontrib><creatorcontrib>Jahanzaib, Mirza</creatorcontrib><creatorcontrib>Wasim, Ahmad</creatorcontrib><creatorcontrib>Hussain, Salman</creatorcontrib><title>Surface roughness modeling using RSM for HSLA steel by coated carbide tools</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Surface roughness is the main indicator of surface quality on machined parts. Accurate predictive models for surface roughness help to choose optimum machining parameters, ultimately support to maximize the productivity without any compromise on quality. In this paper, an average surface roughness ( R a ) model has been developed for turning high-strength low-alloy steel (AISI 4340 with carbon contents less than 0.3 %) using multilayer coated carbide tools. A series of tests using response surface methodology (RSM) has been employed to develop a relationship between R a and machining parameters (feed, speed, and depth of cut). The feed rate has been observed as the main parameter that influences surface roughness. Contour plots of “feed versus speed” and “feed versus depth of cut” signify that target R a value can be achieved through optimal combination of cutting parameters. The accuracy of proposed model has been confirmed through validation data with average prediction error of 3.38 %.</description><subject>CAE) and Design</subject><subject>Carbide tools</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cutting parameters</subject><subject>Engineering</subject><subject>Feed rate</subject><subject>High strength low alloy steels</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Model accuracy</subject><subject>Multilayers</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Production planning</subject><subject>Response surface methodology</subject><subject>Surface properties</subject><subject>Surface roughness</subject><subject>Test procedures</subject><subject>Tool steels</subject><subject>Turning (machining)</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMFKAzEQhoMoWKsP4C3gOZpJdpP0WIpasSJYPYfd7KS2bDc12T307bvLCp6EYeby_f_AR8gt8HvgXD8kzkFzxiFjSnPN8jMygUxKJjnk52TChTJMamUuyVVKu55WoMyEvK676AuHNIZu891gSnQfKqy3zYZ2adgf6zfqQ6TL9WpOU4tY0_JIXSharKgrYrmtkLYh1OmaXPiiTnjze6fk6-nxc7Fkq_fnl8V8xZw0qmVOoQYhDZgS0FWZKl0OMi-95J6XMCtMVRXCZ15pPUM0JjeociOElgAwy-WU3I29hxh-Okyt3YUuNv1LK4TqhyshewpGysWQUkRvD3G7L-LRAreDMzs6s70zOzizQ7MYM6lnmw3Gv-b_QycF_mz6</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Azam, Muhammad</creator><creator>Jahanzaib, Mirza</creator><creator>Wasim, Ahmad</creator><creator>Hussain, Salman</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150501</creationdate><title>Surface roughness modeling using RSM for HSLA steel by coated carbide tools</title><author>Azam, Muhammad ; Jahanzaib, Mirza ; Wasim, Ahmad ; Hussain, Salman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-c6e7123818b1ecd46bc5135bf30f0b19a8dda2f4f6779ee8858e6582273111953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CAE) and Design</topic><topic>Carbide tools</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cutting parameters</topic><topic>Engineering</topic><topic>Feed rate</topic><topic>High strength low alloy steels</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Model accuracy</topic><topic>Multilayers</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Production planning</topic><topic>Response surface methodology</topic><topic>Surface properties</topic><topic>Surface roughness</topic><topic>Test procedures</topic><topic>Tool steels</topic><topic>Turning (machining)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azam, Muhammad</creatorcontrib><creatorcontrib>Jahanzaib, Mirza</creatorcontrib><creatorcontrib>Wasim, Ahmad</creatorcontrib><creatorcontrib>Hussain, Salman</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azam, Muhammad</au><au>Jahanzaib, Mirza</au><au>Wasim, Ahmad</au><au>Hussain, Salman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface roughness modeling using RSM for HSLA steel by coated carbide tools</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>78</volume><issue>5-8</issue><spage>1031</spage><epage>1041</epage><pages>1031-1041</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Surface roughness is the main indicator of surface quality on machined parts. Accurate predictive models for surface roughness help to choose optimum machining parameters, ultimately support to maximize the productivity without any compromise on quality. In this paper, an average surface roughness ( R a ) model has been developed for turning high-strength low-alloy steel (AISI 4340 with carbon contents less than 0.3 %) using multilayer coated carbide tools. A series of tests using response surface methodology (RSM) has been employed to develop a relationship between R a and machining parameters (feed, speed, and depth of cut). The feed rate has been observed as the main parameter that influences surface roughness. Contour plots of “feed versus speed” and “feed versus depth of cut” signify that target R a value can be achieved through optimal combination of cutting parameters. The accuracy of proposed model has been confirmed through validation data with average prediction error of 3.38 %.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-014-6707-5</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2015-05, Vol.78 (5-8), p.1031-1041
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262260623
source SpringerLink Journals - AutoHoldings
subjects CAE) and Design
Carbide tools
Computer-Aided Engineering (CAD
Cutting parameters
Engineering
Feed rate
High strength low alloy steels
Industrial and Production Engineering
Mechanical Engineering
Media Management
Model accuracy
Multilayers
Optimization
Original Article
Prediction models
Production planning
Response surface methodology
Surface properties
Surface roughness
Test procedures
Tool steels
Turning (machining)
title Surface roughness modeling using RSM for HSLA steel by coated carbide tools
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20roughness%20modeling%20using%20RSM%20for%20HSLA%20steel%20by%20coated%20carbide%20tools&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Azam,%20Muhammad&rft.date=2015-05-01&rft.volume=78&rft.issue=5-8&rft.spage=1031&rft.epage=1041&rft.pages=1031-1041&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-014-6707-5&rft_dat=%3Cproquest_cross%3E2262260623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262260623&rft_id=info:pmid/&rfr_iscdi=true