Process characterisation of 3D-printed FDM components using improved evolutionary computational approach

Fused deposition modelling (FDM) is an additive manufacturing technique deployed to fabricate the functional components leading to shorter product development times with less human intervention. Typical characteristics such as surface roughness, mechanical strength and dimensional accuracy are found...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2015-05, Vol.78 (5-8), p.781-793
Hauptverfasser: Vijayaraghavan, V., Garg, A., Lam, Jasmine Siu Lee, Panda, B., Mahapatra, S. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 793
container_issue 5-8
container_start_page 781
container_title International journal of advanced manufacturing technology
container_volume 78
creator Vijayaraghavan, V.
Garg, A.
Lam, Jasmine Siu Lee
Panda, B.
Mahapatra, S. S.
description Fused deposition modelling (FDM) is an additive manufacturing technique deployed to fabricate the functional components leading to shorter product development times with less human intervention. Typical characteristics such as surface roughness, mechanical strength and dimensional accuracy are found to influence the wear strength of FDM fabricated components. It would be useful to determine an explicit numerical model to describe the correlation between various output process parameters and input parameters. In this paper, we have proposed an improved approach of multi-gene genetic programming (Im-MGGP) to formulate the functional relationship between wear strength and input process variables of the FDM process. It was found that the improved approach performs better than MGGP, SVR and ANN models and is able to generalise wear strength of the FDM prototype satisfactorily. Further, sensitivity and parametric analysis is conducted to study the influence of each input variable on the wear strength of the FDM fabricated components. It was found that the input parameter, air gap, has the maximum influence on the wear strength of the FDM fabricated component.
doi_str_mv 10.1007/s00170-014-6679-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262259727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262259727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-d0c105981063a1847be4cf59cdf7f301d2c917334034310bea3cb59c90852b933</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEqXwAGyWmA3XdmInI2r5k4pggNlyHKdN1cbBdirx9jgNEhOTh3u-z_cehK4p3FIAeRcAqAQCNCNCyJLkJ2hGM84JB5qfohkwURAuRXGOLkLYJlpQUczQ5t07Y0PAZqO9NtH6NujYug67BvMl6X3bRVvjx-UrNm7fu852MeAhtN0at_veu0Oa2oPbDWNK--8jNsRjid5h3SdGm80lOmv0Ltir33eOPh8fPhbPZPX29LK4XxHDCxFJDYZCXhYUBNe0yGRlM9Pkpakb2aRbamZKKjnPgGecQmU1N1Ual1DkrCo5n6ObqTd9-zXYENXWDT5tEhRjgrG8lEwmik6U8S4EbxuVDt2n7RUFNQpVk1CVhKpRqMpThk2ZMEpZW__X_H_oB3AQeYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262259727</pqid></control><display><type>article</type><title>Process characterisation of 3D-printed FDM components using improved evolutionary computational approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vijayaraghavan, V. ; Garg, A. ; Lam, Jasmine Siu Lee ; Panda, B. ; Mahapatra, S. S.</creator><creatorcontrib>Vijayaraghavan, V. ; Garg, A. ; Lam, Jasmine Siu Lee ; Panda, B. ; Mahapatra, S. S.</creatorcontrib><description>Fused deposition modelling (FDM) is an additive manufacturing technique deployed to fabricate the functional components leading to shorter product development times with less human intervention. Typical characteristics such as surface roughness, mechanical strength and dimensional accuracy are found to influence the wear strength of FDM fabricated components. It would be useful to determine an explicit numerical model to describe the correlation between various output process parameters and input parameters. In this paper, we have proposed an improved approach of multi-gene genetic programming (Im-MGGP) to formulate the functional relationship between wear strength and input process variables of the FDM process. It was found that the improved approach performs better than MGGP, SVR and ANN models and is able to generalise wear strength of the FDM prototype satisfactorily. Further, sensitivity and parametric analysis is conducted to study the influence of each input variable on the wear strength of the FDM fabricated components. It was found that the input parameter, air gap, has the maximum influence on the wear strength of the FDM fabricated component.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-014-6679-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Air gaps ; CAE) and Design ; Computer-Aided Engineering (CAD ; Engineering ; Fused deposition modeling ; Genetic algorithms ; Industrial and Production Engineering ; Mathematical models ; Mechanical Engineering ; Media Management ; Original Article ; Parameter sensitivity ; Parametric analysis ; Process parameters ; Process variables ; Product development ; Rapid prototyping ; Sensitivity analysis ; Strength ; Surface roughness ; Three dimensional printing ; Wear</subject><ispartof>International journal of advanced manufacturing technology, 2015-05, Vol.78 (5-8), p.781-793</ispartof><rights>Springer-Verlag London 2014</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-d0c105981063a1847be4cf59cdf7f301d2c917334034310bea3cb59c90852b933</citedby><cites>FETCH-LOGICAL-c386t-d0c105981063a1847be4cf59cdf7f301d2c917334034310bea3cb59c90852b933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-014-6679-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-014-6679-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Vijayaraghavan, V.</creatorcontrib><creatorcontrib>Garg, A.</creatorcontrib><creatorcontrib>Lam, Jasmine Siu Lee</creatorcontrib><creatorcontrib>Panda, B.</creatorcontrib><creatorcontrib>Mahapatra, S. S.</creatorcontrib><title>Process characterisation of 3D-printed FDM components using improved evolutionary computational approach</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Fused deposition modelling (FDM) is an additive manufacturing technique deployed to fabricate the functional components leading to shorter product development times with less human intervention. Typical characteristics such as surface roughness, mechanical strength and dimensional accuracy are found to influence the wear strength of FDM fabricated components. It would be useful to determine an explicit numerical model to describe the correlation between various output process parameters and input parameters. In this paper, we have proposed an improved approach of multi-gene genetic programming (Im-MGGP) to formulate the functional relationship between wear strength and input process variables of the FDM process. It was found that the improved approach performs better than MGGP, SVR and ANN models and is able to generalise wear strength of the FDM prototype satisfactorily. Further, sensitivity and parametric analysis is conducted to study the influence of each input variable on the wear strength of the FDM fabricated components. It was found that the input parameter, air gap, has the maximum influence on the wear strength of the FDM fabricated component.</description><subject>Air gaps</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Fused deposition modeling</subject><subject>Genetic algorithms</subject><subject>Industrial and Production Engineering</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Parameter sensitivity</subject><subject>Parametric analysis</subject><subject>Process parameters</subject><subject>Process variables</subject><subject>Product development</subject><subject>Rapid prototyping</subject><subject>Sensitivity analysis</subject><subject>Strength</subject><subject>Surface roughness</subject><subject>Three dimensional printing</subject><subject>Wear</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kL1OwzAURi0EEqXwAGyWmA3XdmInI2r5k4pggNlyHKdN1cbBdirx9jgNEhOTh3u-z_cehK4p3FIAeRcAqAQCNCNCyJLkJ2hGM84JB5qfohkwURAuRXGOLkLYJlpQUczQ5t07Y0PAZqO9NtH6NujYug67BvMl6X3bRVvjx-UrNm7fu852MeAhtN0at_veu0Oa2oPbDWNK--8jNsRjid5h3SdGm80lOmv0Ltir33eOPh8fPhbPZPX29LK4XxHDCxFJDYZCXhYUBNe0yGRlM9Pkpakb2aRbamZKKjnPgGecQmU1N1Ual1DkrCo5n6ObqTd9-zXYENXWDT5tEhRjgrG8lEwmik6U8S4EbxuVDt2n7RUFNQpVk1CVhKpRqMpThk2ZMEpZW__X_H_oB3AQeYU</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Vijayaraghavan, V.</creator><creator>Garg, A.</creator><creator>Lam, Jasmine Siu Lee</creator><creator>Panda, B.</creator><creator>Mahapatra, S. S.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150501</creationdate><title>Process characterisation of 3D-printed FDM components using improved evolutionary computational approach</title><author>Vijayaraghavan, V. ; Garg, A. ; Lam, Jasmine Siu Lee ; Panda, B. ; Mahapatra, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-d0c105981063a1847be4cf59cdf7f301d2c917334034310bea3cb59c90852b933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Air gaps</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Fused deposition modeling</topic><topic>Genetic algorithms</topic><topic>Industrial and Production Engineering</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Parameter sensitivity</topic><topic>Parametric analysis</topic><topic>Process parameters</topic><topic>Process variables</topic><topic>Product development</topic><topic>Rapid prototyping</topic><topic>Sensitivity analysis</topic><topic>Strength</topic><topic>Surface roughness</topic><topic>Three dimensional printing</topic><topic>Wear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vijayaraghavan, V.</creatorcontrib><creatorcontrib>Garg, A.</creatorcontrib><creatorcontrib>Lam, Jasmine Siu Lee</creatorcontrib><creatorcontrib>Panda, B.</creatorcontrib><creatorcontrib>Mahapatra, S. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vijayaraghavan, V.</au><au>Garg, A.</au><au>Lam, Jasmine Siu Lee</au><au>Panda, B.</au><au>Mahapatra, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process characterisation of 3D-printed FDM components using improved evolutionary computational approach</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>78</volume><issue>5-8</issue><spage>781</spage><epage>793</epage><pages>781-793</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Fused deposition modelling (FDM) is an additive manufacturing technique deployed to fabricate the functional components leading to shorter product development times with less human intervention. Typical characteristics such as surface roughness, mechanical strength and dimensional accuracy are found to influence the wear strength of FDM fabricated components. It would be useful to determine an explicit numerical model to describe the correlation between various output process parameters and input parameters. In this paper, we have proposed an improved approach of multi-gene genetic programming (Im-MGGP) to formulate the functional relationship between wear strength and input process variables of the FDM process. It was found that the improved approach performs better than MGGP, SVR and ANN models and is able to generalise wear strength of the FDM prototype satisfactorily. Further, sensitivity and parametric analysis is conducted to study the influence of each input variable on the wear strength of the FDM fabricated components. It was found that the input parameter, air gap, has the maximum influence on the wear strength of the FDM fabricated component.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-014-6679-5</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2015-05, Vol.78 (5-8), p.781-793
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262259727
source SpringerLink Journals - AutoHoldings
subjects Air gaps
CAE) and Design
Computer-Aided Engineering (CAD
Engineering
Fused deposition modeling
Genetic algorithms
Industrial and Production Engineering
Mathematical models
Mechanical Engineering
Media Management
Original Article
Parameter sensitivity
Parametric analysis
Process parameters
Process variables
Product development
Rapid prototyping
Sensitivity analysis
Strength
Surface roughness
Three dimensional printing
Wear
title Process characterisation of 3D-printed FDM components using improved evolutionary computational approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20characterisation%20of%203D-printed%20FDM%20components%20using%20improved%20evolutionary%20computational%20approach&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Vijayaraghavan,%20V.&rft.date=2015-05-01&rft.volume=78&rft.issue=5-8&rft.spage=781&rft.epage=793&rft.pages=781-793&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-014-6679-5&rft_dat=%3Cproquest_cross%3E2262259727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262259727&rft_id=info:pmid/&rfr_iscdi=true