Process characterisation of 3D-printed FDM components using improved evolutionary computational approach
Fused deposition modelling (FDM) is an additive manufacturing technique deployed to fabricate the functional components leading to shorter product development times with less human intervention. Typical characteristics such as surface roughness, mechanical strength and dimensional accuracy are found...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2015-05, Vol.78 (5-8), p.781-793 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 793 |
---|---|
container_issue | 5-8 |
container_start_page | 781 |
container_title | International journal of advanced manufacturing technology |
container_volume | 78 |
creator | Vijayaraghavan, V. Garg, A. Lam, Jasmine Siu Lee Panda, B. Mahapatra, S. S. |
description | Fused deposition modelling (FDM) is an additive manufacturing technique deployed to fabricate the functional components leading to shorter product development times with less human intervention. Typical characteristics such as surface roughness, mechanical strength and dimensional accuracy are found to influence the wear strength of FDM fabricated components. It would be useful to determine an explicit numerical model to describe the correlation between various output process parameters and input parameters. In this paper, we have proposed an improved approach of multi-gene genetic programming (Im-MGGP) to formulate the functional relationship between wear strength and input process variables of the FDM process. It was found that the improved approach performs better than MGGP, SVR and ANN models and is able to generalise wear strength of the FDM prototype satisfactorily. Further, sensitivity and parametric analysis is conducted to study the influence of each input variable on the wear strength of the FDM fabricated components. It was found that the input parameter, air gap, has the maximum influence on the wear strength of the FDM fabricated component. |
doi_str_mv | 10.1007/s00170-014-6679-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262259727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262259727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-d0c105981063a1847be4cf59cdf7f301d2c917334034310bea3cb59c90852b933</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEqXwAGyWmA3XdmInI2r5k4pggNlyHKdN1cbBdirx9jgNEhOTh3u-z_cehK4p3FIAeRcAqAQCNCNCyJLkJ2hGM84JB5qfohkwURAuRXGOLkLYJlpQUczQ5t07Y0PAZqO9NtH6NujYug67BvMl6X3bRVvjx-UrNm7fu852MeAhtN0at_veu0Oa2oPbDWNK--8jNsRjid5h3SdGm80lOmv0Ltir33eOPh8fPhbPZPX29LK4XxHDCxFJDYZCXhYUBNe0yGRlM9Pkpakb2aRbamZKKjnPgGecQmU1N1Ual1DkrCo5n6ObqTd9-zXYENXWDT5tEhRjgrG8lEwmik6U8S4EbxuVDt2n7RUFNQpVk1CVhKpRqMpThk2ZMEpZW__X_H_oB3AQeYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262259727</pqid></control><display><type>article</type><title>Process characterisation of 3D-printed FDM components using improved evolutionary computational approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vijayaraghavan, V. ; Garg, A. ; Lam, Jasmine Siu Lee ; Panda, B. ; Mahapatra, S. S.</creator><creatorcontrib>Vijayaraghavan, V. ; Garg, A. ; Lam, Jasmine Siu Lee ; Panda, B. ; Mahapatra, S. S.</creatorcontrib><description>Fused deposition modelling (FDM) is an additive manufacturing technique deployed to fabricate the functional components leading to shorter product development times with less human intervention. Typical characteristics such as surface roughness, mechanical strength and dimensional accuracy are found to influence the wear strength of FDM fabricated components. It would be useful to determine an explicit numerical model to describe the correlation between various output process parameters and input parameters. In this paper, we have proposed an improved approach of multi-gene genetic programming (Im-MGGP) to formulate the functional relationship between wear strength and input process variables of the FDM process. It was found that the improved approach performs better than MGGP, SVR and ANN models and is able to generalise wear strength of the FDM prototype satisfactorily. Further, sensitivity and parametric analysis is conducted to study the influence of each input variable on the wear strength of the FDM fabricated components. It was found that the input parameter, air gap, has the maximum influence on the wear strength of the FDM fabricated component.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-014-6679-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Air gaps ; CAE) and Design ; Computer-Aided Engineering (CAD ; Engineering ; Fused deposition modeling ; Genetic algorithms ; Industrial and Production Engineering ; Mathematical models ; Mechanical Engineering ; Media Management ; Original Article ; Parameter sensitivity ; Parametric analysis ; Process parameters ; Process variables ; Product development ; Rapid prototyping ; Sensitivity analysis ; Strength ; Surface roughness ; Three dimensional printing ; Wear</subject><ispartof>International journal of advanced manufacturing technology, 2015-05, Vol.78 (5-8), p.781-793</ispartof><rights>Springer-Verlag London 2014</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-d0c105981063a1847be4cf59cdf7f301d2c917334034310bea3cb59c90852b933</citedby><cites>FETCH-LOGICAL-c386t-d0c105981063a1847be4cf59cdf7f301d2c917334034310bea3cb59c90852b933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-014-6679-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-014-6679-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Vijayaraghavan, V.</creatorcontrib><creatorcontrib>Garg, A.</creatorcontrib><creatorcontrib>Lam, Jasmine Siu Lee</creatorcontrib><creatorcontrib>Panda, B.</creatorcontrib><creatorcontrib>Mahapatra, S. S.</creatorcontrib><title>Process characterisation of 3D-printed FDM components using improved evolutionary computational approach</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Fused deposition modelling (FDM) is an additive manufacturing technique deployed to fabricate the functional components leading to shorter product development times with less human intervention. Typical characteristics such as surface roughness, mechanical strength and dimensional accuracy are found to influence the wear strength of FDM fabricated components. It would be useful to determine an explicit numerical model to describe the correlation between various output process parameters and input parameters. In this paper, we have proposed an improved approach of multi-gene genetic programming (Im-MGGP) to formulate the functional relationship between wear strength and input process variables of the FDM process. It was found that the improved approach performs better than MGGP, SVR and ANN models and is able to generalise wear strength of the FDM prototype satisfactorily. Further, sensitivity and parametric analysis is conducted to study the influence of each input variable on the wear strength of the FDM fabricated components. It was found that the input parameter, air gap, has the maximum influence on the wear strength of the FDM fabricated component.</description><subject>Air gaps</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Fused deposition modeling</subject><subject>Genetic algorithms</subject><subject>Industrial and Production Engineering</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Parameter sensitivity</subject><subject>Parametric analysis</subject><subject>Process parameters</subject><subject>Process variables</subject><subject>Product development</subject><subject>Rapid prototyping</subject><subject>Sensitivity analysis</subject><subject>Strength</subject><subject>Surface roughness</subject><subject>Three dimensional printing</subject><subject>Wear</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kL1OwzAURi0EEqXwAGyWmA3XdmInI2r5k4pggNlyHKdN1cbBdirx9jgNEhOTh3u-z_cehK4p3FIAeRcAqAQCNCNCyJLkJ2hGM84JB5qfohkwURAuRXGOLkLYJlpQUczQ5t07Y0PAZqO9NtH6NujYug67BvMl6X3bRVvjx-UrNm7fu852MeAhtN0at_veu0Oa2oPbDWNK--8jNsRjid5h3SdGm80lOmv0Ltir33eOPh8fPhbPZPX29LK4XxHDCxFJDYZCXhYUBNe0yGRlM9Pkpakb2aRbamZKKjnPgGecQmU1N1Ual1DkrCo5n6ObqTd9-zXYENXWDT5tEhRjgrG8lEwmik6U8S4EbxuVDt2n7RUFNQpVk1CVhKpRqMpThk2ZMEpZW__X_H_oB3AQeYU</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Vijayaraghavan, V.</creator><creator>Garg, A.</creator><creator>Lam, Jasmine Siu Lee</creator><creator>Panda, B.</creator><creator>Mahapatra, S. S.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150501</creationdate><title>Process characterisation of 3D-printed FDM components using improved evolutionary computational approach</title><author>Vijayaraghavan, V. ; Garg, A. ; Lam, Jasmine Siu Lee ; Panda, B. ; Mahapatra, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-d0c105981063a1847be4cf59cdf7f301d2c917334034310bea3cb59c90852b933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Air gaps</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Fused deposition modeling</topic><topic>Genetic algorithms</topic><topic>Industrial and Production Engineering</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Parameter sensitivity</topic><topic>Parametric analysis</topic><topic>Process parameters</topic><topic>Process variables</topic><topic>Product development</topic><topic>Rapid prototyping</topic><topic>Sensitivity analysis</topic><topic>Strength</topic><topic>Surface roughness</topic><topic>Three dimensional printing</topic><topic>Wear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vijayaraghavan, V.</creatorcontrib><creatorcontrib>Garg, A.</creatorcontrib><creatorcontrib>Lam, Jasmine Siu Lee</creatorcontrib><creatorcontrib>Panda, B.</creatorcontrib><creatorcontrib>Mahapatra, S. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vijayaraghavan, V.</au><au>Garg, A.</au><au>Lam, Jasmine Siu Lee</au><au>Panda, B.</au><au>Mahapatra, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process characterisation of 3D-printed FDM components using improved evolutionary computational approach</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>78</volume><issue>5-8</issue><spage>781</spage><epage>793</epage><pages>781-793</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Fused deposition modelling (FDM) is an additive manufacturing technique deployed to fabricate the functional components leading to shorter product development times with less human intervention. Typical characteristics such as surface roughness, mechanical strength and dimensional accuracy are found to influence the wear strength of FDM fabricated components. It would be useful to determine an explicit numerical model to describe the correlation between various output process parameters and input parameters. In this paper, we have proposed an improved approach of multi-gene genetic programming (Im-MGGP) to formulate the functional relationship between wear strength and input process variables of the FDM process. It was found that the improved approach performs better than MGGP, SVR and ANN models and is able to generalise wear strength of the FDM prototype satisfactorily. Further, sensitivity and parametric analysis is conducted to study the influence of each input variable on the wear strength of the FDM fabricated components. It was found that the input parameter, air gap, has the maximum influence on the wear strength of the FDM fabricated component.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-014-6679-5</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2015-05, Vol.78 (5-8), p.781-793 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2262259727 |
source | SpringerLink Journals - AutoHoldings |
subjects | Air gaps CAE) and Design Computer-Aided Engineering (CAD Engineering Fused deposition modeling Genetic algorithms Industrial and Production Engineering Mathematical models Mechanical Engineering Media Management Original Article Parameter sensitivity Parametric analysis Process parameters Process variables Product development Rapid prototyping Sensitivity analysis Strength Surface roughness Three dimensional printing Wear |
title | Process characterisation of 3D-printed FDM components using improved evolutionary computational approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20characterisation%20of%203D-printed%20FDM%20components%20using%20improved%20evolutionary%20computational%20approach&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Vijayaraghavan,%20V.&rft.date=2015-05-01&rft.volume=78&rft.issue=5-8&rft.spage=781&rft.epage=793&rft.pages=781-793&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-014-6679-5&rft_dat=%3Cproquest_cross%3E2262259727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262259727&rft_id=info:pmid/&rfr_iscdi=true |