A simultaneous planning of production and scheduling operations in flexible flow shops: case study of tile industry

The aim of this paper is to study a simultaneous lot-sizing and scheduling in multi-product, multi-period flexible flow shop environments. A new mixed integer programming (MIP) model is proposed to formulate the problem. The objective function includes the total cost of production, inventory, and ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2017-02, Vol.88 (9-12), p.2389-2403
Hauptverfasser: Ramezanian, Reza, Fallah Sanami, Sahar, Shafiei Nikabadi, Mohsen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2403
container_issue 9-12
container_start_page 2389
container_title International journal of advanced manufacturing technology
container_volume 88
creator Ramezanian, Reza
Fallah Sanami, Sahar
Shafiei Nikabadi, Mohsen
description The aim of this paper is to study a simultaneous lot-sizing and scheduling in multi-product, multi-period flexible flow shop environments. A new mixed integer programming (MIP) model is proposed to formulate the problem. The objective function includes the total cost of production, inventory, and external supply. In this study, in case of not meeting the demand of customers, this demand should be met by foreign suppliers in higher price. Due to the high computational complexity of the studied problem, a rolling horizon heuristic (RHH) and particle swarm optimization algorithm (PSO) are implemented to solve the problem. These algorithms find a feasible and near-optimal from production planning and scheduling. Additionally, Taguchi method is conducted to calibrate the parameters of the PSO algorithm and select the optimal levels of the influential factors. The computational results show that the algorithms are capable of achieving results with good quality in a reasonable time and PSO has better objective values in comparison with RHH. Also, the real case study for tile industry with real features is applied. Sensitivity analysis is used to evaluate the performance of the model.
doi_str_mv 10.1007/s00170-016-8955-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262212651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262212651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-44261ffca045f60928bd6e6ee464ff922311e0d4d44b6e486f0aab5dae586cb13</originalsourceid><addsrcrecordid>eNp9kc1OwzAQhC0EEqXwANwscQ7YjuM43KqKP6kSFzhbTmy3qVI7eBNBeXocyoELnNbSfDOr9SB0Sck1JaS8AUJoSTJCRSarosg-j9CM8jzPckKLYzQjTMgsL4U8RWcA20QLKuQMwQJDuxu7QXsbRsB9p71v_RoHh_sYzNgMbfBYe4Oh2Vgzdt9ib6OeBMCtx66zH23d2fQI7xg2oYdb3GiwGIbR7KeooU1y680IQ9yfoxOnO7AXP3OOXu_vXpaP2er54Wm5WGVNLssh45wJ6lyjCS-cIBWTtRFWWMsFd65iLKfUEsMN57WwXApHtK4Lo20hRVPTfI6uDrnpkLfRwqC2YYw-rVSMCcYoE8W_FJWSlGUlaJ4oeqCaGACidaqP7U7HvaJETQ2oQwMqfayaGlCfycMOHkisX9v4K_lP0xeeAYr1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262212651</pqid></control><display><type>article</type><title>A simultaneous planning of production and scheduling operations in flexible flow shops: case study of tile industry</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ramezanian, Reza ; Fallah Sanami, Sahar ; Shafiei Nikabadi, Mohsen</creator><creatorcontrib>Ramezanian, Reza ; Fallah Sanami, Sahar ; Shafiei Nikabadi, Mohsen</creatorcontrib><description>The aim of this paper is to study a simultaneous lot-sizing and scheduling in multi-product, multi-period flexible flow shop environments. A new mixed integer programming (MIP) model is proposed to formulate the problem. The objective function includes the total cost of production, inventory, and external supply. In this study, in case of not meeting the demand of customers, this demand should be met by foreign suppliers in higher price. Due to the high computational complexity of the studied problem, a rolling horizon heuristic (RHH) and particle swarm optimization algorithm (PSO) are implemented to solve the problem. These algorithms find a feasible and near-optimal from production planning and scheduling. Additionally, Taguchi method is conducted to calibrate the parameters of the PSO algorithm and select the optimal levels of the influential factors. The computational results show that the algorithms are capable of achieving results with good quality in a reasonable time and PSO has better objective values in comparison with RHH. Also, the real case study for tile industry with real features is applied. Sensitivity analysis is used to evaluate the performance of the model.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-016-8955-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; CAE) and Design ; Case studies ; Computation ; Computer-Aided Engineering (CAD ; Engineering ; Industrial and Production Engineering ; Integer programming ; Linear programming ; Lot sizing ; Mechanical Engineering ; Media Management ; Mixed integer ; Original Article ; Particle swarm optimization ; Production planning ; Production scheduling ; Sensitivity analysis ; Taguchi methods</subject><ispartof>International journal of advanced manufacturing technology, 2017-02, Vol.88 (9-12), p.2389-2403</ispartof><rights>Springer-Verlag London 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-44261ffca045f60928bd6e6ee464ff922311e0d4d44b6e486f0aab5dae586cb13</citedby><cites>FETCH-LOGICAL-c387t-44261ffca045f60928bd6e6ee464ff922311e0d4d44b6e486f0aab5dae586cb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-016-8955-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-016-8955-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ramezanian, Reza</creatorcontrib><creatorcontrib>Fallah Sanami, Sahar</creatorcontrib><creatorcontrib>Shafiei Nikabadi, Mohsen</creatorcontrib><title>A simultaneous planning of production and scheduling operations in flexible flow shops: case study of tile industry</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The aim of this paper is to study a simultaneous lot-sizing and scheduling in multi-product, multi-period flexible flow shop environments. A new mixed integer programming (MIP) model is proposed to formulate the problem. The objective function includes the total cost of production, inventory, and external supply. In this study, in case of not meeting the demand of customers, this demand should be met by foreign suppliers in higher price. Due to the high computational complexity of the studied problem, a rolling horizon heuristic (RHH) and particle swarm optimization algorithm (PSO) are implemented to solve the problem. These algorithms find a feasible and near-optimal from production planning and scheduling. Additionally, Taguchi method is conducted to calibrate the parameters of the PSO algorithm and select the optimal levels of the influential factors. The computational results show that the algorithms are capable of achieving results with good quality in a reasonable time and PSO has better objective values in comparison with RHH. Also, the real case study for tile industry with real features is applied. Sensitivity analysis is used to evaluate the performance of the model.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Case studies</subject><subject>Computation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Lot sizing</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Mixed integer</subject><subject>Original Article</subject><subject>Particle swarm optimization</subject><subject>Production planning</subject><subject>Production scheduling</subject><subject>Sensitivity analysis</subject><subject>Taguchi methods</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc1OwzAQhC0EEqXwANwscQ7YjuM43KqKP6kSFzhbTmy3qVI7eBNBeXocyoELnNbSfDOr9SB0Sck1JaS8AUJoSTJCRSarosg-j9CM8jzPckKLYzQjTMgsL4U8RWcA20QLKuQMwQJDuxu7QXsbRsB9p71v_RoHh_sYzNgMbfBYe4Oh2Vgzdt9ib6OeBMCtx66zH23d2fQI7xg2oYdb3GiwGIbR7KeooU1y680IQ9yfoxOnO7AXP3OOXu_vXpaP2er54Wm5WGVNLssh45wJ6lyjCS-cIBWTtRFWWMsFd65iLKfUEsMN57WwXApHtK4Lo20hRVPTfI6uDrnpkLfRwqC2YYw-rVSMCcYoE8W_FJWSlGUlaJ4oeqCaGACidaqP7U7HvaJETQ2oQwMqfayaGlCfycMOHkisX9v4K_lP0xeeAYr1</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Ramezanian, Reza</creator><creator>Fallah Sanami, Sahar</creator><creator>Shafiei Nikabadi, Mohsen</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170201</creationdate><title>A simultaneous planning of production and scheduling operations in flexible flow shops: case study of tile industry</title><author>Ramezanian, Reza ; Fallah Sanami, Sahar ; Shafiei Nikabadi, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-44261ffca045f60928bd6e6ee464ff922311e0d4d44b6e486f0aab5dae586cb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Case studies</topic><topic>Computation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Lot sizing</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Mixed integer</topic><topic>Original Article</topic><topic>Particle swarm optimization</topic><topic>Production planning</topic><topic>Production scheduling</topic><topic>Sensitivity analysis</topic><topic>Taguchi methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramezanian, Reza</creatorcontrib><creatorcontrib>Fallah Sanami, Sahar</creatorcontrib><creatorcontrib>Shafiei Nikabadi, Mohsen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramezanian, Reza</au><au>Fallah Sanami, Sahar</au><au>Shafiei Nikabadi, Mohsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simultaneous planning of production and scheduling operations in flexible flow shops: case study of tile industry</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>88</volume><issue>9-12</issue><spage>2389</spage><epage>2403</epage><pages>2389-2403</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The aim of this paper is to study a simultaneous lot-sizing and scheduling in multi-product, multi-period flexible flow shop environments. A new mixed integer programming (MIP) model is proposed to formulate the problem. The objective function includes the total cost of production, inventory, and external supply. In this study, in case of not meeting the demand of customers, this demand should be met by foreign suppliers in higher price. Due to the high computational complexity of the studied problem, a rolling horizon heuristic (RHH) and particle swarm optimization algorithm (PSO) are implemented to solve the problem. These algorithms find a feasible and near-optimal from production planning and scheduling. Additionally, Taguchi method is conducted to calibrate the parameters of the PSO algorithm and select the optimal levels of the influential factors. The computational results show that the algorithms are capable of achieving results with good quality in a reasonable time and PSO has better objective values in comparison with RHH. Also, the real case study for tile industry with real features is applied. Sensitivity analysis is used to evaluate the performance of the model.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-016-8955-z</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2017-02, Vol.88 (9-12), p.2389-2403
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262212651
source SpringerLink Journals - AutoHoldings
subjects Algorithms
CAE) and Design
Case studies
Computation
Computer-Aided Engineering (CAD
Engineering
Industrial and Production Engineering
Integer programming
Linear programming
Lot sizing
Mechanical Engineering
Media Management
Mixed integer
Original Article
Particle swarm optimization
Production planning
Production scheduling
Sensitivity analysis
Taguchi methods
title A simultaneous planning of production and scheduling operations in flexible flow shops: case study of tile industry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simultaneous%20planning%20of%20production%20and%20scheduling%20operations%20in%20flexible%20flow%20shops:%20case%20study%20of%20tile%20industry&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Ramezanian,%20Reza&rft.date=2017-02-01&rft.volume=88&rft.issue=9-12&rft.spage=2389&rft.epage=2403&rft.pages=2389-2403&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-016-8955-z&rft_dat=%3Cproquest_cross%3E2262212651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262212651&rft_id=info:pmid/&rfr_iscdi=true