A simultaneous planning of production and scheduling operations in flexible flow shops: case study of tile industry
The aim of this paper is to study a simultaneous lot-sizing and scheduling in multi-product, multi-period flexible flow shop environments. A new mixed integer programming (MIP) model is proposed to formulate the problem. The objective function includes the total cost of production, inventory, and ex...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2017-02, Vol.88 (9-12), p.2389-2403 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2403 |
---|---|
container_issue | 9-12 |
container_start_page | 2389 |
container_title | International journal of advanced manufacturing technology |
container_volume | 88 |
creator | Ramezanian, Reza Fallah Sanami, Sahar Shafiei Nikabadi, Mohsen |
description | The aim of this paper is to study a simultaneous lot-sizing and scheduling in multi-product, multi-period flexible flow shop environments. A new mixed integer programming (MIP) model is proposed to formulate the problem. The objective function includes the total cost of production, inventory, and external supply. In this study, in case of not meeting the demand of customers, this demand should be met by foreign suppliers in higher price. Due to the high computational complexity of the studied problem, a rolling horizon heuristic (RHH) and particle swarm optimization algorithm (PSO) are implemented to solve the problem. These algorithms find a feasible and near-optimal from production planning and scheduling. Additionally, Taguchi method is conducted to calibrate the parameters of the PSO algorithm and select the optimal levels of the influential factors. The computational results show that the algorithms are capable of achieving results with good quality in a reasonable time and PSO has better objective values in comparison with RHH. Also, the real case study for tile industry with real features is applied. Sensitivity analysis is used to evaluate the performance of the model. |
doi_str_mv | 10.1007/s00170-016-8955-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262212651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262212651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-44261ffca045f60928bd6e6ee464ff922311e0d4d44b6e486f0aab5dae586cb13</originalsourceid><addsrcrecordid>eNp9kc1OwzAQhC0EEqXwANwscQ7YjuM43KqKP6kSFzhbTmy3qVI7eBNBeXocyoELnNbSfDOr9SB0Sck1JaS8AUJoSTJCRSarosg-j9CM8jzPckKLYzQjTMgsL4U8RWcA20QLKuQMwQJDuxu7QXsbRsB9p71v_RoHh_sYzNgMbfBYe4Oh2Vgzdt9ib6OeBMCtx66zH23d2fQI7xg2oYdb3GiwGIbR7KeooU1y680IQ9yfoxOnO7AXP3OOXu_vXpaP2er54Wm5WGVNLssh45wJ6lyjCS-cIBWTtRFWWMsFd65iLKfUEsMN57WwXApHtK4Lo20hRVPTfI6uDrnpkLfRwqC2YYw-rVSMCcYoE8W_FJWSlGUlaJ4oeqCaGACidaqP7U7HvaJETQ2oQwMqfayaGlCfycMOHkisX9v4K_lP0xeeAYr1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262212651</pqid></control><display><type>article</type><title>A simultaneous planning of production and scheduling operations in flexible flow shops: case study of tile industry</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ramezanian, Reza ; Fallah Sanami, Sahar ; Shafiei Nikabadi, Mohsen</creator><creatorcontrib>Ramezanian, Reza ; Fallah Sanami, Sahar ; Shafiei Nikabadi, Mohsen</creatorcontrib><description>The aim of this paper is to study a simultaneous lot-sizing and scheduling in multi-product, multi-period flexible flow shop environments. A new mixed integer programming (MIP) model is proposed to formulate the problem. The objective function includes the total cost of production, inventory, and external supply. In this study, in case of not meeting the demand of customers, this demand should be met by foreign suppliers in higher price. Due to the high computational complexity of the studied problem, a rolling horizon heuristic (RHH) and particle swarm optimization algorithm (PSO) are implemented to solve the problem. These algorithms find a feasible and near-optimal from production planning and scheduling. Additionally, Taguchi method is conducted to calibrate the parameters of the PSO algorithm and select the optimal levels of the influential factors. The computational results show that the algorithms are capable of achieving results with good quality in a reasonable time and PSO has better objective values in comparison with RHH. Also, the real case study for tile industry with real features is applied. Sensitivity analysis is used to evaluate the performance of the model.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-016-8955-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; CAE) and Design ; Case studies ; Computation ; Computer-Aided Engineering (CAD ; Engineering ; Industrial and Production Engineering ; Integer programming ; Linear programming ; Lot sizing ; Mechanical Engineering ; Media Management ; Mixed integer ; Original Article ; Particle swarm optimization ; Production planning ; Production scheduling ; Sensitivity analysis ; Taguchi methods</subject><ispartof>International journal of advanced manufacturing technology, 2017-02, Vol.88 (9-12), p.2389-2403</ispartof><rights>Springer-Verlag London 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-44261ffca045f60928bd6e6ee464ff922311e0d4d44b6e486f0aab5dae586cb13</citedby><cites>FETCH-LOGICAL-c387t-44261ffca045f60928bd6e6ee464ff922311e0d4d44b6e486f0aab5dae586cb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-016-8955-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-016-8955-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ramezanian, Reza</creatorcontrib><creatorcontrib>Fallah Sanami, Sahar</creatorcontrib><creatorcontrib>Shafiei Nikabadi, Mohsen</creatorcontrib><title>A simultaneous planning of production and scheduling operations in flexible flow shops: case study of tile industry</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The aim of this paper is to study a simultaneous lot-sizing and scheduling in multi-product, multi-period flexible flow shop environments. A new mixed integer programming (MIP) model is proposed to formulate the problem. The objective function includes the total cost of production, inventory, and external supply. In this study, in case of not meeting the demand of customers, this demand should be met by foreign suppliers in higher price. Due to the high computational complexity of the studied problem, a rolling horizon heuristic (RHH) and particle swarm optimization algorithm (PSO) are implemented to solve the problem. These algorithms find a feasible and near-optimal from production planning and scheduling. Additionally, Taguchi method is conducted to calibrate the parameters of the PSO algorithm and select the optimal levels of the influential factors. The computational results show that the algorithms are capable of achieving results with good quality in a reasonable time and PSO has better objective values in comparison with RHH. Also, the real case study for tile industry with real features is applied. Sensitivity analysis is used to evaluate the performance of the model.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Case studies</subject><subject>Computation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Lot sizing</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Mixed integer</subject><subject>Original Article</subject><subject>Particle swarm optimization</subject><subject>Production planning</subject><subject>Production scheduling</subject><subject>Sensitivity analysis</subject><subject>Taguchi methods</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc1OwzAQhC0EEqXwANwscQ7YjuM43KqKP6kSFzhbTmy3qVI7eBNBeXocyoELnNbSfDOr9SB0Sck1JaS8AUJoSTJCRSarosg-j9CM8jzPckKLYzQjTMgsL4U8RWcA20QLKuQMwQJDuxu7QXsbRsB9p71v_RoHh_sYzNgMbfBYe4Oh2Vgzdt9ib6OeBMCtx66zH23d2fQI7xg2oYdb3GiwGIbR7KeooU1y680IQ9yfoxOnO7AXP3OOXu_vXpaP2er54Wm5WGVNLssh45wJ6lyjCS-cIBWTtRFWWMsFd65iLKfUEsMN57WwXApHtK4Lo20hRVPTfI6uDrnpkLfRwqC2YYw-rVSMCcYoE8W_FJWSlGUlaJ4oeqCaGACidaqP7U7HvaJETQ2oQwMqfayaGlCfycMOHkisX9v4K_lP0xeeAYr1</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Ramezanian, Reza</creator><creator>Fallah Sanami, Sahar</creator><creator>Shafiei Nikabadi, Mohsen</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170201</creationdate><title>A simultaneous planning of production and scheduling operations in flexible flow shops: case study of tile industry</title><author>Ramezanian, Reza ; Fallah Sanami, Sahar ; Shafiei Nikabadi, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-44261ffca045f60928bd6e6ee464ff922311e0d4d44b6e486f0aab5dae586cb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Case studies</topic><topic>Computation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Lot sizing</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Mixed integer</topic><topic>Original Article</topic><topic>Particle swarm optimization</topic><topic>Production planning</topic><topic>Production scheduling</topic><topic>Sensitivity analysis</topic><topic>Taguchi methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramezanian, Reza</creatorcontrib><creatorcontrib>Fallah Sanami, Sahar</creatorcontrib><creatorcontrib>Shafiei Nikabadi, Mohsen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramezanian, Reza</au><au>Fallah Sanami, Sahar</au><au>Shafiei Nikabadi, Mohsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simultaneous planning of production and scheduling operations in flexible flow shops: case study of tile industry</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>88</volume><issue>9-12</issue><spage>2389</spage><epage>2403</epage><pages>2389-2403</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The aim of this paper is to study a simultaneous lot-sizing and scheduling in multi-product, multi-period flexible flow shop environments. A new mixed integer programming (MIP) model is proposed to formulate the problem. The objective function includes the total cost of production, inventory, and external supply. In this study, in case of not meeting the demand of customers, this demand should be met by foreign suppliers in higher price. Due to the high computational complexity of the studied problem, a rolling horizon heuristic (RHH) and particle swarm optimization algorithm (PSO) are implemented to solve the problem. These algorithms find a feasible and near-optimal from production planning and scheduling. Additionally, Taguchi method is conducted to calibrate the parameters of the PSO algorithm and select the optimal levels of the influential factors. The computational results show that the algorithms are capable of achieving results with good quality in a reasonable time and PSO has better objective values in comparison with RHH. Also, the real case study for tile industry with real features is applied. Sensitivity analysis is used to evaluate the performance of the model.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-016-8955-z</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2017-02, Vol.88 (9-12), p.2389-2403 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2262212651 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms CAE) and Design Case studies Computation Computer-Aided Engineering (CAD Engineering Industrial and Production Engineering Integer programming Linear programming Lot sizing Mechanical Engineering Media Management Mixed integer Original Article Particle swarm optimization Production planning Production scheduling Sensitivity analysis Taguchi methods |
title | A simultaneous planning of production and scheduling operations in flexible flow shops: case study of tile industry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simultaneous%20planning%20of%20production%20and%20scheduling%20operations%20in%20flexible%20flow%20shops:%20case%20study%20of%20tile%20industry&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Ramezanian,%20Reza&rft.date=2017-02-01&rft.volume=88&rft.issue=9-12&rft.spage=2389&rft.epage=2403&rft.pages=2389-2403&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-016-8955-z&rft_dat=%3Cproquest_cross%3E2262212651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262212651&rft_id=info:pmid/&rfr_iscdi=true |