Influence of Deposition Techniques on the Thermal Boundary Resistance of Aluminum Thin-Films

The influence of film deposition techniques on the thermal boundary resistance of an aluminum (Al)/silicon (Si) interface was investigated in this study. Al films 100 nm in thickness were deposited on Si(100) wafers using an e-beam evaporator and a direct current (DC) magnetron sputtering system. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of precision engineering and manufacturing 2019-08, Vol.20 (8), p.1435-1441
Hauptverfasser: Suk, Myung Eun, Kim, Yun Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1441
container_issue 8
container_start_page 1435
container_title International journal of precision engineering and manufacturing
container_volume 20
creator Suk, Myung Eun
Kim, Yun Young
description The influence of film deposition techniques on the thermal boundary resistance of an aluminum (Al)/silicon (Si) interface was investigated in this study. Al films 100 nm in thickness were deposited on Si(100) wafers using an e-beam evaporator and a direct current (DC) magnetron sputtering system. Their microstructural characteristics were inspected using scanning electron microscopy with energy dispersive spectroscopy, atomic force microscopy, and X-ray diffraction. The thermal boundary resistance values of the samples were measured using the time-domain thermoreflectance technique and numerically analyzed based on the transient Fourier heat conduction equation. A non-equilibrium molecular dynamics (MD) study was carried out to understand the effect of the atomic disorder at the film/substrate interface. Results show that the film produced by DC sputtering has a rougher surface than that of the e-beam evaporated one and a higher thermal boundary resistance. This is in agreement with the qualitative trend observed from the MD simulation that showed increases in thermal boundary resistance with the depth of atom intermixing.
doi_str_mv 10.1007/s12541-019-00160-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262122421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262122421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-ead6a337258f5db373775736d952bd85dad05b359a9925cbaa4bbb1928149aa03</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouKz7BzwVPEeTSdM0x3V1dWFBkPUmhKRN3Uibrkl78N-btQvePM0MfO_NzEPompJbSoi4ixR4TjGhEhNCC4LFGZoBIRznBYHz1APLseCSXaJFjM4QRqFgvCxm6H3jm3a0vrJZ32QP9tBHN7jeZztb7b37Gm3M0jTsbbbb29DpNrvvR1_r8J292ujioE_aZTt2zo9d4pzHa9d28QpdNLqNdnGqc_S2ftytnvH25WmzWm5xxTgbsNV1oRkTwMuG14YJJgQXrKglB1OXvNY14YZxqaUEXhmtc2MMlVDSXGpN2BzdTL6H0B8vHtRnPwafViqAAihADjRRMFFV6GMMtlGH4Lr0iKJEHYNUU5AqBal-g1Qiidgkign2Hzb8Wf-j-gFMHHW2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262122421</pqid></control><display><type>article</type><title>Influence of Deposition Techniques on the Thermal Boundary Resistance of Aluminum Thin-Films</title><source>SpringerLink Journals - AutoHoldings</source><creator>Suk, Myung Eun ; Kim, Yun Young</creator><creatorcontrib>Suk, Myung Eun ; Kim, Yun Young</creatorcontrib><description>The influence of film deposition techniques on the thermal boundary resistance of an aluminum (Al)/silicon (Si) interface was investigated in this study. Al films 100 nm in thickness were deposited on Si(100) wafers using an e-beam evaporator and a direct current (DC) magnetron sputtering system. Their microstructural characteristics were inspected using scanning electron microscopy with energy dispersive spectroscopy, atomic force microscopy, and X-ray diffraction. The thermal boundary resistance values of the samples were measured using the time-domain thermoreflectance technique and numerically analyzed based on the transient Fourier heat conduction equation. A non-equilibrium molecular dynamics (MD) study was carried out to understand the effect of the atomic disorder at the film/substrate interface. Results show that the film produced by DC sputtering has a rougher surface than that of the e-beam evaporated one and a higher thermal boundary resistance. This is in agreement with the qualitative trend observed from the MD simulation that showed increases in thermal boundary resistance with the depth of atom intermixing.</description><identifier>ISSN: 2234-7593</identifier><identifier>EISSN: 2005-4602</identifier><identifier>DOI: 10.1007/s12541-019-00160-7</identifier><language>eng</language><publisher>Seoul: Korean Society for Precision Engineering</publisher><subject>Aluminum ; Atomic beam spectroscopy ; Atomic force microscopy ; Computer simulation ; Conduction heating ; Conductive heat transfer ; Deposition ; Direct current ; Electron beam evaporators ; Engineering ; Industrial and Production Engineering ; Magnetron sputtering ; Materials Science ; Microscopy ; Molecular dynamics ; Qualitative analysis ; Regular Paper ; Scanning electron microscopy ; Silicon ; Substrates ; Thermal resistance ; Thickness ; Thin films ; Time domain analysis</subject><ispartof>International journal of precision engineering and manufacturing, 2019-08, Vol.20 (8), p.1435-1441</ispartof><rights>Korean Society for Precision Engineering 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-ead6a337258f5db373775736d952bd85dad05b359a9925cbaa4bbb1928149aa03</citedby><cites>FETCH-LOGICAL-c353t-ead6a337258f5db373775736d952bd85dad05b359a9925cbaa4bbb1928149aa03</cites><orcidid>0000-0001-8945-9843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12541-019-00160-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12541-019-00160-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Suk, Myung Eun</creatorcontrib><creatorcontrib>Kim, Yun Young</creatorcontrib><title>Influence of Deposition Techniques on the Thermal Boundary Resistance of Aluminum Thin-Films</title><title>International journal of precision engineering and manufacturing</title><addtitle>Int. J. Precis. Eng. Manuf</addtitle><description>The influence of film deposition techniques on the thermal boundary resistance of an aluminum (Al)/silicon (Si) interface was investigated in this study. Al films 100 nm in thickness were deposited on Si(100) wafers using an e-beam evaporator and a direct current (DC) magnetron sputtering system. Their microstructural characteristics were inspected using scanning electron microscopy with energy dispersive spectroscopy, atomic force microscopy, and X-ray diffraction. The thermal boundary resistance values of the samples were measured using the time-domain thermoreflectance technique and numerically analyzed based on the transient Fourier heat conduction equation. A non-equilibrium molecular dynamics (MD) study was carried out to understand the effect of the atomic disorder at the film/substrate interface. Results show that the film produced by DC sputtering has a rougher surface than that of the e-beam evaporated one and a higher thermal boundary resistance. This is in agreement with the qualitative trend observed from the MD simulation that showed increases in thermal boundary resistance with the depth of atom intermixing.</description><subject>Aluminum</subject><subject>Atomic beam spectroscopy</subject><subject>Atomic force microscopy</subject><subject>Computer simulation</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Deposition</subject><subject>Direct current</subject><subject>Electron beam evaporators</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Magnetron sputtering</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Molecular dynamics</subject><subject>Qualitative analysis</subject><subject>Regular Paper</subject><subject>Scanning electron microscopy</subject><subject>Silicon</subject><subject>Substrates</subject><subject>Thermal resistance</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Time domain analysis</subject><issn>2234-7593</issn><issn>2005-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouKz7BzwVPEeTSdM0x3V1dWFBkPUmhKRN3Uibrkl78N-btQvePM0MfO_NzEPompJbSoi4ixR4TjGhEhNCC4LFGZoBIRznBYHz1APLseCSXaJFjM4QRqFgvCxm6H3jm3a0vrJZ32QP9tBHN7jeZztb7b37Gm3M0jTsbbbb29DpNrvvR1_r8J292ujioE_aZTt2zo9d4pzHa9d28QpdNLqNdnGqc_S2ftytnvH25WmzWm5xxTgbsNV1oRkTwMuG14YJJgQXrKglB1OXvNY14YZxqaUEXhmtc2MMlVDSXGpN2BzdTL6H0B8vHtRnPwafViqAAihADjRRMFFV6GMMtlGH4Lr0iKJEHYNUU5AqBal-g1Qiidgkign2Hzb8Wf-j-gFMHHW2</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Suk, Myung Eun</creator><creator>Kim, Yun Young</creator><general>Korean Society for Precision Engineering</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8945-9843</orcidid></search><sort><creationdate>20190801</creationdate><title>Influence of Deposition Techniques on the Thermal Boundary Resistance of Aluminum Thin-Films</title><author>Suk, Myung Eun ; Kim, Yun Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-ead6a337258f5db373775736d952bd85dad05b359a9925cbaa4bbb1928149aa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Atomic beam spectroscopy</topic><topic>Atomic force microscopy</topic><topic>Computer simulation</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Deposition</topic><topic>Direct current</topic><topic>Electron beam evaporators</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Magnetron sputtering</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Molecular dynamics</topic><topic>Qualitative analysis</topic><topic>Regular Paper</topic><topic>Scanning electron microscopy</topic><topic>Silicon</topic><topic>Substrates</topic><topic>Thermal resistance</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suk, Myung Eun</creatorcontrib><creatorcontrib>Kim, Yun Young</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of precision engineering and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suk, Myung Eun</au><au>Kim, Yun Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Deposition Techniques on the Thermal Boundary Resistance of Aluminum Thin-Films</atitle><jtitle>International journal of precision engineering and manufacturing</jtitle><stitle>Int. J. Precis. Eng. Manuf</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>20</volume><issue>8</issue><spage>1435</spage><epage>1441</epage><pages>1435-1441</pages><issn>2234-7593</issn><eissn>2005-4602</eissn><abstract>The influence of film deposition techniques on the thermal boundary resistance of an aluminum (Al)/silicon (Si) interface was investigated in this study. Al films 100 nm in thickness were deposited on Si(100) wafers using an e-beam evaporator and a direct current (DC) magnetron sputtering system. Their microstructural characteristics were inspected using scanning electron microscopy with energy dispersive spectroscopy, atomic force microscopy, and X-ray diffraction. The thermal boundary resistance values of the samples were measured using the time-domain thermoreflectance technique and numerically analyzed based on the transient Fourier heat conduction equation. A non-equilibrium molecular dynamics (MD) study was carried out to understand the effect of the atomic disorder at the film/substrate interface. Results show that the film produced by DC sputtering has a rougher surface than that of the e-beam evaporated one and a higher thermal boundary resistance. This is in agreement with the qualitative trend observed from the MD simulation that showed increases in thermal boundary resistance with the depth of atom intermixing.</abstract><cop>Seoul</cop><pub>Korean Society for Precision Engineering</pub><doi>10.1007/s12541-019-00160-7</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8945-9843</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2234-7593
ispartof International journal of precision engineering and manufacturing, 2019-08, Vol.20 (8), p.1435-1441
issn 2234-7593
2005-4602
language eng
recordid cdi_proquest_journals_2262122421
source SpringerLink Journals - AutoHoldings
subjects Aluminum
Atomic beam spectroscopy
Atomic force microscopy
Computer simulation
Conduction heating
Conductive heat transfer
Deposition
Direct current
Electron beam evaporators
Engineering
Industrial and Production Engineering
Magnetron sputtering
Materials Science
Microscopy
Molecular dynamics
Qualitative analysis
Regular Paper
Scanning electron microscopy
Silicon
Substrates
Thermal resistance
Thickness
Thin films
Time domain analysis
title Influence of Deposition Techniques on the Thermal Boundary Resistance of Aluminum Thin-Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Deposition%20Techniques%20on%20the%20Thermal%20Boundary%20Resistance%20of%20Aluminum%20Thin-Films&rft.jtitle=International%20journal%20of%20precision%20engineering%20and%20manufacturing&rft.au=Suk,%20Myung%20Eun&rft.date=2019-08-01&rft.volume=20&rft.issue=8&rft.spage=1435&rft.epage=1441&rft.pages=1435-1441&rft.issn=2234-7593&rft.eissn=2005-4602&rft_id=info:doi/10.1007/s12541-019-00160-7&rft_dat=%3Cproquest_cross%3E2262122421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262122421&rft_id=info:pmid/&rfr_iscdi=true