Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties
The present study examined the application of polyols obtained via microwave-assisted liquefaction of lignin in the production of rigid polyurethane foam. Lignin was liquefied in crude glycerol and 1,4-butanediol at different temperatures (130–170 °C), without a catalyst and using various biomass co...
Gespeichert in:
Veröffentlicht in: | Wood science and technology 2018-05, Vol.52 (3), p.599-617 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 617 |
---|---|
container_issue | 3 |
container_start_page | 599 |
container_title | Wood science and technology |
container_volume | 52 |
creator | Gosz, Kamila Kosmela, Paulina Hejna, Aleksander Gajowiec, Grzegorz Piszczyk, Łukasz |
description | The present study examined the application of polyols obtained via microwave-assisted liquefaction of lignin in the production of rigid polyurethane foam. Lignin was liquefied in crude glycerol and 1,4-butanediol at different temperatures (130–170 °C), without a catalyst and using various biomass concentrations (15 and 30 wt%). The physicochemical properties, process yield, and FTIR-based identification of the obtained polyols were investigated. Under optimal conditions, i.e., a 5-min microwave heating time and a reaction temperature of 150 °C, a polyol characterized by a suitable hydroxyl number of 670 mg KOH/g was obtained with a 93% process yield. Liquefied biopolyol was directly used for the production of rigid polyurethane foams with the addition of polymeric diphenylmethane diisocyanate at the [NCO/OH] ratio of 2:1. Mechanical properties of the obtained foams gradually improved with increasing content of biopolyol. The 5% weight loss temperature (
T
5
) for bio-based foams was higher, respectively 6 and 13 °C compared to the petrochemical foam. Replacement of petrochemical polyether with biopolyols showed the ability to obtain rigid polyurethane foams from lignin and crude glycerol.
Graphical Abstract |
doi_str_mv | 10.1007/s00226-018-0991-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262102530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262102530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-1f4bf9fbc1a93d5b9ca21050ac5c68f3335ce393207135cd4c5a22500a39705c3</originalsourceid><addsrcrecordid>eNp1UE1LAzEUDKJgrf4AbwGvjb4km27jTcUvKHjRc8hms23KdrMm2Ur99aas4MnTm_eYmccMQpcUrilAeRMBGJsToAsCUlJSHKEJLTgjgjFxjCYABSdlSeUpOotxA0DLslhM0Pe9871v976N2FdJu87WeOc03joT_JfeWaJjdDHlc-s-B9tok5zvsG_yvupcd4tjCoNJQ7AzHNbWt37ljG5nuF_v4wFh3dU4rW3YZtwH39uQnI3n6KTRbbQXv3OKPp4e3x9eyPLt-fXhbkkMl_NEaFNUjWwqQ7Xktaik0YyCAG2EmS8azrkwlkvOoKQZ1oUROmcG0FyWIAyfoqvRN7_OAWJSGz-ELr9UubLsxQSHzKIjK8eOMdhG9cFtddgrCupQsRorVrlidahYFVnDRk3M3G5lw5_z_6IfolaA2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262102530</pqid></control><display><type>article</type><title>Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties</title><source>SpringerLink Journals</source><creator>Gosz, Kamila ; Kosmela, Paulina ; Hejna, Aleksander ; Gajowiec, Grzegorz ; Piszczyk, Łukasz</creator><creatorcontrib>Gosz, Kamila ; Kosmela, Paulina ; Hejna, Aleksander ; Gajowiec, Grzegorz ; Piszczyk, Łukasz</creatorcontrib><description>The present study examined the application of polyols obtained via microwave-assisted liquefaction of lignin in the production of rigid polyurethane foam. Lignin was liquefied in crude glycerol and 1,4-butanediol at different temperatures (130–170 °C), without a catalyst and using various biomass concentrations (15 and 30 wt%). The physicochemical properties, process yield, and FTIR-based identification of the obtained polyols were investigated. Under optimal conditions, i.e., a 5-min microwave heating time and a reaction temperature of 150 °C, a polyol characterized by a suitable hydroxyl number of 670 mg KOH/g was obtained with a 93% process yield. Liquefied biopolyol was directly used for the production of rigid polyurethane foams with the addition of polymeric diphenylmethane diisocyanate at the [NCO/OH] ratio of 2:1. Mechanical properties of the obtained foams gradually improved with increasing content of biopolyol. The 5% weight loss temperature (
T
5
) for bio-based foams was higher, respectively 6 and 13 °C compared to the petrochemical foam. Replacement of petrochemical polyether with biopolyols showed the ability to obtain rigid polyurethane foams from lignin and crude glycerol.
Graphical Abstract</description><identifier>ISSN: 0043-7719</identifier><identifier>EISSN: 1432-5225</identifier><identifier>DOI: 10.1007/s00226-018-0991-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Addition polymerization ; Biomedical and Life Sciences ; Butanediol ; Ceramics ; Composites ; Diphenyl methane diisocyanate ; Foams ; Glass ; Glycerol ; Life Sciences ; Lignin ; Liquefaction ; Machines ; Manufacturing ; Mechanical properties ; Natural Materials ; Original ; Petrochemicals ; Petrochemicals industry ; Physicochemical properties ; Plastic foam ; Polyols ; Polyurethane ; Polyurethane foam ; Processes ; Rheological properties ; Thermal properties ; Thermodynamic properties ; Weight loss ; Wood Science & Technology</subject><ispartof>Wood science and technology, 2018-05, Vol.52 (3), p.599-617</ispartof><rights>The Author(s) 2018</rights><rights>Wood Science and Technology is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-1f4bf9fbc1a93d5b9ca21050ac5c68f3335ce393207135cd4c5a22500a39705c3</citedby><cites>FETCH-LOGICAL-c396t-1f4bf9fbc1a93d5b9ca21050ac5c68f3335ce393207135cd4c5a22500a39705c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00226-018-0991-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00226-018-0991-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gosz, Kamila</creatorcontrib><creatorcontrib>Kosmela, Paulina</creatorcontrib><creatorcontrib>Hejna, Aleksander</creatorcontrib><creatorcontrib>Gajowiec, Grzegorz</creatorcontrib><creatorcontrib>Piszczyk, Łukasz</creatorcontrib><title>Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties</title><title>Wood science and technology</title><addtitle>Wood Sci Technol</addtitle><description>The present study examined the application of polyols obtained via microwave-assisted liquefaction of lignin in the production of rigid polyurethane foam. Lignin was liquefied in crude glycerol and 1,4-butanediol at different temperatures (130–170 °C), without a catalyst and using various biomass concentrations (15 and 30 wt%). The physicochemical properties, process yield, and FTIR-based identification of the obtained polyols were investigated. Under optimal conditions, i.e., a 5-min microwave heating time and a reaction temperature of 150 °C, a polyol characterized by a suitable hydroxyl number of 670 mg KOH/g was obtained with a 93% process yield. Liquefied biopolyol was directly used for the production of rigid polyurethane foams with the addition of polymeric diphenylmethane diisocyanate at the [NCO/OH] ratio of 2:1. Mechanical properties of the obtained foams gradually improved with increasing content of biopolyol. The 5% weight loss temperature (
T
5
) for bio-based foams was higher, respectively 6 and 13 °C compared to the petrochemical foam. Replacement of petrochemical polyether with biopolyols showed the ability to obtain rigid polyurethane foams from lignin and crude glycerol.
Graphical Abstract</description><subject>Addition polymerization</subject><subject>Biomedical and Life Sciences</subject><subject>Butanediol</subject><subject>Ceramics</subject><subject>Composites</subject><subject>Diphenyl methane diisocyanate</subject><subject>Foams</subject><subject>Glass</subject><subject>Glycerol</subject><subject>Life Sciences</subject><subject>Lignin</subject><subject>Liquefaction</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Natural Materials</subject><subject>Original</subject><subject>Petrochemicals</subject><subject>Petrochemicals industry</subject><subject>Physicochemical properties</subject><subject>Plastic foam</subject><subject>Polyols</subject><subject>Polyurethane</subject><subject>Polyurethane foam</subject><subject>Processes</subject><subject>Rheological properties</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Weight loss</subject><subject>Wood Science & Technology</subject><issn>0043-7719</issn><issn>1432-5225</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1UE1LAzEUDKJgrf4AbwGvjb4km27jTcUvKHjRc8hms23KdrMm2Ur99aas4MnTm_eYmccMQpcUrilAeRMBGJsToAsCUlJSHKEJLTgjgjFxjCYABSdlSeUpOotxA0DLslhM0Pe9871v976N2FdJu87WeOc03joT_JfeWaJjdDHlc-s-B9tok5zvsG_yvupcd4tjCoNJQ7AzHNbWt37ljG5nuF_v4wFh3dU4rW3YZtwH39uQnI3n6KTRbbQXv3OKPp4e3x9eyPLt-fXhbkkMl_NEaFNUjWwqQ7Xktaik0YyCAG2EmS8azrkwlkvOoKQZ1oUROmcG0FyWIAyfoqvRN7_OAWJSGz-ELr9UubLsxQSHzKIjK8eOMdhG9cFtddgrCupQsRorVrlidahYFVnDRk3M3G5lw5_z_6IfolaA2w</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Gosz, Kamila</creator><creator>Kosmela, Paulina</creator><creator>Hejna, Aleksander</creator><creator>Gajowiec, Grzegorz</creator><creator>Piszczyk, Łukasz</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20180501</creationdate><title>Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties</title><author>Gosz, Kamila ; Kosmela, Paulina ; Hejna, Aleksander ; Gajowiec, Grzegorz ; Piszczyk, Łukasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-1f4bf9fbc1a93d5b9ca21050ac5c68f3335ce393207135cd4c5a22500a39705c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Addition polymerization</topic><topic>Biomedical and Life Sciences</topic><topic>Butanediol</topic><topic>Ceramics</topic><topic>Composites</topic><topic>Diphenyl methane diisocyanate</topic><topic>Foams</topic><topic>Glass</topic><topic>Glycerol</topic><topic>Life Sciences</topic><topic>Lignin</topic><topic>Liquefaction</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Natural Materials</topic><topic>Original</topic><topic>Petrochemicals</topic><topic>Petrochemicals industry</topic><topic>Physicochemical properties</topic><topic>Plastic foam</topic><topic>Polyols</topic><topic>Polyurethane</topic><topic>Polyurethane foam</topic><topic>Processes</topic><topic>Rheological properties</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Weight loss</topic><topic>Wood Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gosz, Kamila</creatorcontrib><creatorcontrib>Kosmela, Paulina</creatorcontrib><creatorcontrib>Hejna, Aleksander</creatorcontrib><creatorcontrib>Gajowiec, Grzegorz</creatorcontrib><creatorcontrib>Piszczyk, Łukasz</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Wood science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gosz, Kamila</au><au>Kosmela, Paulina</au><au>Hejna, Aleksander</au><au>Gajowiec, Grzegorz</au><au>Piszczyk, Łukasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties</atitle><jtitle>Wood science and technology</jtitle><stitle>Wood Sci Technol</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>52</volume><issue>3</issue><spage>599</spage><epage>617</epage><pages>599-617</pages><issn>0043-7719</issn><eissn>1432-5225</eissn><abstract>The present study examined the application of polyols obtained via microwave-assisted liquefaction of lignin in the production of rigid polyurethane foam. Lignin was liquefied in crude glycerol and 1,4-butanediol at different temperatures (130–170 °C), without a catalyst and using various biomass concentrations (15 and 30 wt%). The physicochemical properties, process yield, and FTIR-based identification of the obtained polyols were investigated. Under optimal conditions, i.e., a 5-min microwave heating time and a reaction temperature of 150 °C, a polyol characterized by a suitable hydroxyl number of 670 mg KOH/g was obtained with a 93% process yield. Liquefied biopolyol was directly used for the production of rigid polyurethane foams with the addition of polymeric diphenylmethane diisocyanate at the [NCO/OH] ratio of 2:1. Mechanical properties of the obtained foams gradually improved with increasing content of biopolyol. The 5% weight loss temperature (
T
5
) for bio-based foams was higher, respectively 6 and 13 °C compared to the petrochemical foam. Replacement of petrochemical polyether with biopolyols showed the ability to obtain rigid polyurethane foams from lignin and crude glycerol.
Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00226-018-0991-4</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-7719 |
ispartof | Wood science and technology, 2018-05, Vol.52 (3), p.599-617 |
issn | 0043-7719 1432-5225 |
language | eng |
recordid | cdi_proquest_journals_2262102530 |
source | SpringerLink Journals |
subjects | Addition polymerization Biomedical and Life Sciences Butanediol Ceramics Composites Diphenyl methane diisocyanate Foams Glass Glycerol Life Sciences Lignin Liquefaction Machines Manufacturing Mechanical properties Natural Materials Original Petrochemicals Petrochemicals industry Physicochemical properties Plastic foam Polyols Polyurethane Polyurethane foam Processes Rheological properties Thermal properties Thermodynamic properties Weight loss Wood Science & Technology |
title | Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biopolyols%20obtained%20via%20microwave-assisted%20liquefaction%20of%20lignin:%20structure,%20rheological,%20physical%20and%20thermal%20properties&rft.jtitle=Wood%20science%20and%20technology&rft.au=Gosz,%20Kamila&rft.date=2018-05-01&rft.volume=52&rft.issue=3&rft.spage=599&rft.epage=617&rft.pages=599-617&rft.issn=0043-7719&rft.eissn=1432-5225&rft_id=info:doi/10.1007/s00226-018-0991-4&rft_dat=%3Cproquest_cross%3E2262102530%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262102530&rft_id=info:pmid/&rfr_iscdi=true |