Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties

The present study examined the application of polyols obtained via microwave-assisted liquefaction of lignin in the production of rigid polyurethane foam. Lignin was liquefied in crude glycerol and 1,4-butanediol at different temperatures (130–170 °C), without a catalyst and using various biomass co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wood science and technology 2018-05, Vol.52 (3), p.599-617
Hauptverfasser: Gosz, Kamila, Kosmela, Paulina, Hejna, Aleksander, Gajowiec, Grzegorz, Piszczyk, Łukasz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 617
container_issue 3
container_start_page 599
container_title Wood science and technology
container_volume 52
creator Gosz, Kamila
Kosmela, Paulina
Hejna, Aleksander
Gajowiec, Grzegorz
Piszczyk, Łukasz
description The present study examined the application of polyols obtained via microwave-assisted liquefaction of lignin in the production of rigid polyurethane foam. Lignin was liquefied in crude glycerol and 1,4-butanediol at different temperatures (130–170 °C), without a catalyst and using various biomass concentrations (15 and 30 wt%). The physicochemical properties, process yield, and FTIR-based identification of the obtained polyols were investigated. Under optimal conditions, i.e., a 5-min microwave heating time and a reaction temperature of 150 °C, a polyol characterized by a suitable hydroxyl number of 670 mg KOH/g was obtained with a 93% process yield. Liquefied biopolyol was directly used for the production of rigid polyurethane foams with the addition of polymeric diphenylmethane diisocyanate at the [NCO/OH] ratio of 2:1. Mechanical properties of the obtained foams gradually improved with increasing content of biopolyol. The 5% weight loss temperature ( T 5 ) for bio-based foams was higher, respectively 6 and 13 °C compared to the petrochemical foam. Replacement of petrochemical polyether with biopolyols showed the ability to obtain rigid polyurethane foams from lignin and crude glycerol. Graphical Abstract
doi_str_mv 10.1007/s00226-018-0991-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262102530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262102530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-1f4bf9fbc1a93d5b9ca21050ac5c68f3335ce393207135cd4c5a22500a39705c3</originalsourceid><addsrcrecordid>eNp1UE1LAzEUDKJgrf4AbwGvjb4km27jTcUvKHjRc8hms23KdrMm2Ur99aas4MnTm_eYmccMQpcUrilAeRMBGJsToAsCUlJSHKEJLTgjgjFxjCYABSdlSeUpOotxA0DLslhM0Pe9871v976N2FdJu87WeOc03joT_JfeWaJjdDHlc-s-B9tok5zvsG_yvupcd4tjCoNJQ7AzHNbWt37ljG5nuF_v4wFh3dU4rW3YZtwH39uQnI3n6KTRbbQXv3OKPp4e3x9eyPLt-fXhbkkMl_NEaFNUjWwqQ7Xktaik0YyCAG2EmS8azrkwlkvOoKQZ1oUROmcG0FyWIAyfoqvRN7_OAWJSGz-ELr9UubLsxQSHzKIjK8eOMdhG9cFtddgrCupQsRorVrlidahYFVnDRk3M3G5lw5_z_6IfolaA2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262102530</pqid></control><display><type>article</type><title>Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties</title><source>SpringerLink Journals</source><creator>Gosz, Kamila ; Kosmela, Paulina ; Hejna, Aleksander ; Gajowiec, Grzegorz ; Piszczyk, Łukasz</creator><creatorcontrib>Gosz, Kamila ; Kosmela, Paulina ; Hejna, Aleksander ; Gajowiec, Grzegorz ; Piszczyk, Łukasz</creatorcontrib><description>The present study examined the application of polyols obtained via microwave-assisted liquefaction of lignin in the production of rigid polyurethane foam. Lignin was liquefied in crude glycerol and 1,4-butanediol at different temperatures (130–170 °C), without a catalyst and using various biomass concentrations (15 and 30 wt%). The physicochemical properties, process yield, and FTIR-based identification of the obtained polyols were investigated. Under optimal conditions, i.e., a 5-min microwave heating time and a reaction temperature of 150 °C, a polyol characterized by a suitable hydroxyl number of 670 mg KOH/g was obtained with a 93% process yield. Liquefied biopolyol was directly used for the production of rigid polyurethane foams with the addition of polymeric diphenylmethane diisocyanate at the [NCO/OH] ratio of 2:1. Mechanical properties of the obtained foams gradually improved with increasing content of biopolyol. The 5% weight loss temperature ( T 5 ) for bio-based foams was higher, respectively 6 and 13 °C compared to the petrochemical foam. Replacement of petrochemical polyether with biopolyols showed the ability to obtain rigid polyurethane foams from lignin and crude glycerol. Graphical Abstract</description><identifier>ISSN: 0043-7719</identifier><identifier>EISSN: 1432-5225</identifier><identifier>DOI: 10.1007/s00226-018-0991-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Addition polymerization ; Biomedical and Life Sciences ; Butanediol ; Ceramics ; Composites ; Diphenyl methane diisocyanate ; Foams ; Glass ; Glycerol ; Life Sciences ; Lignin ; Liquefaction ; Machines ; Manufacturing ; Mechanical properties ; Natural Materials ; Original ; Petrochemicals ; Petrochemicals industry ; Physicochemical properties ; Plastic foam ; Polyols ; Polyurethane ; Polyurethane foam ; Processes ; Rheological properties ; Thermal properties ; Thermodynamic properties ; Weight loss ; Wood Science &amp; Technology</subject><ispartof>Wood science and technology, 2018-05, Vol.52 (3), p.599-617</ispartof><rights>The Author(s) 2018</rights><rights>Wood Science and Technology is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-1f4bf9fbc1a93d5b9ca21050ac5c68f3335ce393207135cd4c5a22500a39705c3</citedby><cites>FETCH-LOGICAL-c396t-1f4bf9fbc1a93d5b9ca21050ac5c68f3335ce393207135cd4c5a22500a39705c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00226-018-0991-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00226-018-0991-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gosz, Kamila</creatorcontrib><creatorcontrib>Kosmela, Paulina</creatorcontrib><creatorcontrib>Hejna, Aleksander</creatorcontrib><creatorcontrib>Gajowiec, Grzegorz</creatorcontrib><creatorcontrib>Piszczyk, Łukasz</creatorcontrib><title>Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties</title><title>Wood science and technology</title><addtitle>Wood Sci Technol</addtitle><description>The present study examined the application of polyols obtained via microwave-assisted liquefaction of lignin in the production of rigid polyurethane foam. Lignin was liquefied in crude glycerol and 1,4-butanediol at different temperatures (130–170 °C), without a catalyst and using various biomass concentrations (15 and 30 wt%). The physicochemical properties, process yield, and FTIR-based identification of the obtained polyols were investigated. Under optimal conditions, i.e., a 5-min microwave heating time and a reaction temperature of 150 °C, a polyol characterized by a suitable hydroxyl number of 670 mg KOH/g was obtained with a 93% process yield. Liquefied biopolyol was directly used for the production of rigid polyurethane foams with the addition of polymeric diphenylmethane diisocyanate at the [NCO/OH] ratio of 2:1. Mechanical properties of the obtained foams gradually improved with increasing content of biopolyol. The 5% weight loss temperature ( T 5 ) for bio-based foams was higher, respectively 6 and 13 °C compared to the petrochemical foam. Replacement of petrochemical polyether with biopolyols showed the ability to obtain rigid polyurethane foams from lignin and crude glycerol. Graphical Abstract</description><subject>Addition polymerization</subject><subject>Biomedical and Life Sciences</subject><subject>Butanediol</subject><subject>Ceramics</subject><subject>Composites</subject><subject>Diphenyl methane diisocyanate</subject><subject>Foams</subject><subject>Glass</subject><subject>Glycerol</subject><subject>Life Sciences</subject><subject>Lignin</subject><subject>Liquefaction</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Natural Materials</subject><subject>Original</subject><subject>Petrochemicals</subject><subject>Petrochemicals industry</subject><subject>Physicochemical properties</subject><subject>Plastic foam</subject><subject>Polyols</subject><subject>Polyurethane</subject><subject>Polyurethane foam</subject><subject>Processes</subject><subject>Rheological properties</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Weight loss</subject><subject>Wood Science &amp; Technology</subject><issn>0043-7719</issn><issn>1432-5225</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1UE1LAzEUDKJgrf4AbwGvjb4km27jTcUvKHjRc8hms23KdrMm2Ur99aas4MnTm_eYmccMQpcUrilAeRMBGJsToAsCUlJSHKEJLTgjgjFxjCYABSdlSeUpOotxA0DLslhM0Pe9871v976N2FdJu87WeOc03joT_JfeWaJjdDHlc-s-B9tok5zvsG_yvupcd4tjCoNJQ7AzHNbWt37ljG5nuF_v4wFh3dU4rW3YZtwH39uQnI3n6KTRbbQXv3OKPp4e3x9eyPLt-fXhbkkMl_NEaFNUjWwqQ7Xktaik0YyCAG2EmS8azrkwlkvOoKQZ1oUROmcG0FyWIAyfoqvRN7_OAWJSGz-ELr9UubLsxQSHzKIjK8eOMdhG9cFtddgrCupQsRorVrlidahYFVnDRk3M3G5lw5_z_6IfolaA2w</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Gosz, Kamila</creator><creator>Kosmela, Paulina</creator><creator>Hejna, Aleksander</creator><creator>Gajowiec, Grzegorz</creator><creator>Piszczyk, Łukasz</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20180501</creationdate><title>Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties</title><author>Gosz, Kamila ; Kosmela, Paulina ; Hejna, Aleksander ; Gajowiec, Grzegorz ; Piszczyk, Łukasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-1f4bf9fbc1a93d5b9ca21050ac5c68f3335ce393207135cd4c5a22500a39705c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Addition polymerization</topic><topic>Biomedical and Life Sciences</topic><topic>Butanediol</topic><topic>Ceramics</topic><topic>Composites</topic><topic>Diphenyl methane diisocyanate</topic><topic>Foams</topic><topic>Glass</topic><topic>Glycerol</topic><topic>Life Sciences</topic><topic>Lignin</topic><topic>Liquefaction</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Natural Materials</topic><topic>Original</topic><topic>Petrochemicals</topic><topic>Petrochemicals industry</topic><topic>Physicochemical properties</topic><topic>Plastic foam</topic><topic>Polyols</topic><topic>Polyurethane</topic><topic>Polyurethane foam</topic><topic>Processes</topic><topic>Rheological properties</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Weight loss</topic><topic>Wood Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gosz, Kamila</creatorcontrib><creatorcontrib>Kosmela, Paulina</creatorcontrib><creatorcontrib>Hejna, Aleksander</creatorcontrib><creatorcontrib>Gajowiec, Grzegorz</creatorcontrib><creatorcontrib>Piszczyk, Łukasz</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Wood science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gosz, Kamila</au><au>Kosmela, Paulina</au><au>Hejna, Aleksander</au><au>Gajowiec, Grzegorz</au><au>Piszczyk, Łukasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties</atitle><jtitle>Wood science and technology</jtitle><stitle>Wood Sci Technol</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>52</volume><issue>3</issue><spage>599</spage><epage>617</epage><pages>599-617</pages><issn>0043-7719</issn><eissn>1432-5225</eissn><abstract>The present study examined the application of polyols obtained via microwave-assisted liquefaction of lignin in the production of rigid polyurethane foam. Lignin was liquefied in crude glycerol and 1,4-butanediol at different temperatures (130–170 °C), without a catalyst and using various biomass concentrations (15 and 30 wt%). The physicochemical properties, process yield, and FTIR-based identification of the obtained polyols were investigated. Under optimal conditions, i.e., a 5-min microwave heating time and a reaction temperature of 150 °C, a polyol characterized by a suitable hydroxyl number of 670 mg KOH/g was obtained with a 93% process yield. Liquefied biopolyol was directly used for the production of rigid polyurethane foams with the addition of polymeric diphenylmethane diisocyanate at the [NCO/OH] ratio of 2:1. Mechanical properties of the obtained foams gradually improved with increasing content of biopolyol. The 5% weight loss temperature ( T 5 ) for bio-based foams was higher, respectively 6 and 13 °C compared to the petrochemical foam. Replacement of petrochemical polyether with biopolyols showed the ability to obtain rigid polyurethane foams from lignin and crude glycerol. Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00226-018-0991-4</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-7719
ispartof Wood science and technology, 2018-05, Vol.52 (3), p.599-617
issn 0043-7719
1432-5225
language eng
recordid cdi_proquest_journals_2262102530
source SpringerLink Journals
subjects Addition polymerization
Biomedical and Life Sciences
Butanediol
Ceramics
Composites
Diphenyl methane diisocyanate
Foams
Glass
Glycerol
Life Sciences
Lignin
Liquefaction
Machines
Manufacturing
Mechanical properties
Natural Materials
Original
Petrochemicals
Petrochemicals industry
Physicochemical properties
Plastic foam
Polyols
Polyurethane
Polyurethane foam
Processes
Rheological properties
Thermal properties
Thermodynamic properties
Weight loss
Wood Science & Technology
title Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biopolyols%20obtained%20via%20microwave-assisted%20liquefaction%20of%20lignin:%20structure,%20rheological,%20physical%20and%20thermal%20properties&rft.jtitle=Wood%20science%20and%20technology&rft.au=Gosz,%20Kamila&rft.date=2018-05-01&rft.volume=52&rft.issue=3&rft.spage=599&rft.epage=617&rft.pages=599-617&rft.issn=0043-7719&rft.eissn=1432-5225&rft_id=info:doi/10.1007/s00226-018-0991-4&rft_dat=%3Cproquest_cross%3E2262102530%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262102530&rft_id=info:pmid/&rfr_iscdi=true