Giant dielectric breakdown strength together with ultrahigh energy density in ferroelectric bulk ceramics via layer-by-layer engineering
Designing of high breakdown strength and high energy density dielectric ceramics is an important but challenging issue in applications of energy-storage devices. In this work, BaTiO 3 @3 wt% Al 2 O 3 , 1 wt% SiO 2 (BTAS) and 0.87BaTiO 3 -0.13Bi(Zn 2/3 (Nb 0.85 Ta 0.15 ) 1/3 )O 3 (BTBZNT) ferroelectr...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (29), p.17283-17291 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17291 |
---|---|
container_issue | 29 |
container_start_page | 17283 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 7 |
creator | Cai, Ziming Zhu, Chaoqiong Wang, Hongxian Zhao, Peiyao Yu, Yan Li, Longtu Wang, Xiaohui |
description | Designing of high breakdown strength and high energy density dielectric ceramics is an important but challenging issue in applications of energy-storage devices. In this work, BaTiO
3
@3 wt% Al
2
O
3
, 1 wt% SiO
2
(BTAS) and 0.87BaTiO
3
-0.13Bi(Zn
2/3
(Nb
0.85
Ta
0.15
)
1/3
)O
3
(BTBZNT) ferroelectric ceramics are layer-by-layer designed and fabricated
via
isostatic lamination with the help of the Roll-to-Roll tape-casting technique. The relaxor ferroelectric BTBZNT ceramic is known for its high energy efficiency while the BTAS ceramic exhibits a higher breakdown strength. By combining their complementary advantages and the interfacial effect, a record-high dielectric breakdown strength of 790 kV cm
−1
is obtained in layer-by-layer structured bulk ceramics when four BTBZNT layers and four BTAS layers alternately arrange in parallel. The corresponding discharge energy density is 5.04 J cm
−3
, which is obviously much higher than that of BaTiO
3
-based ceramics (∼1–2 J cm
−3
). The mechanism by which the layer-by-layer structure can induce giant dielectric breakdown strength is studied
via
interface microstructure characterization and a phase-field breakdown model. In addition, the layer-by-layer structured ceramic shows an excellent temperature stability in the energy-storage performance. Under an applied electric field of 400 kV cm
−1
at 1 Hz, the variation of discharge energy density is less than ±5% over the temperature range from 25 °C to 170 °C. All these features indicate that this kind of layer-by-layer structured ceramic can be considered a promising candidate in high-voltage high-temperature energy-storage systems. |
doi_str_mv | 10.1039/C9TA05182A |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262095555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262095555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-9dea7691384fd9b18e084f63c8e602f34dd7dda174ddb051bd65b467018f6edf3</originalsourceid><addsrcrecordid>eNpFkF9LwzAUxYMoOOZe_AQB34Rq-i9NHsfQKQx8mc8lbW7bbF06bzJHv4Ef2-jEnZf7O3A4Fw4htzF7iFkqHxdyPWd5LJL5BZkkLGdRkUl--c9CXJOZcxsWJBjjUk7I19Io66k20EPt0dS0QlBbPRwtdR7Btr6jfmjBd4D0aII79B5VZ9qOggVsR6rBOuNHaixtAHE4Vx36La0B1c7Ujn4aRXs1AkbVGP1CKGiNBUBj2xty1ajewezvTsn789N68RKt3pavi_kqqhPJfSQ1qILLOBVZo2UVC2CBeFoL4Cxp0kzrQmsVFwGqMEaleV5lvGCxaDjoJp2Su1PvHoePAzhfboYD2vCyTBKeMJkHhdT9KVXj4BxCU-7R7BSOZczKn7HL89jpN99NdM8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262095555</pqid></control><display><type>article</type><title>Giant dielectric breakdown strength together with ultrahigh energy density in ferroelectric bulk ceramics via layer-by-layer engineering</title><source>Royal Society of Chemistry</source><creator>Cai, Ziming ; Zhu, Chaoqiong ; Wang, Hongxian ; Zhao, Peiyao ; Yu, Yan ; Li, Longtu ; Wang, Xiaohui</creator><creatorcontrib>Cai, Ziming ; Zhu, Chaoqiong ; Wang, Hongxian ; Zhao, Peiyao ; Yu, Yan ; Li, Longtu ; Wang, Xiaohui</creatorcontrib><description>Designing of high breakdown strength and high energy density dielectric ceramics is an important but challenging issue in applications of energy-storage devices. In this work, BaTiO
3
@3 wt% Al
2
O
3
, 1 wt% SiO
2
(BTAS) and 0.87BaTiO
3
-0.13Bi(Zn
2/3
(Nb
0.85
Ta
0.15
)
1/3
)O
3
(BTBZNT) ferroelectric ceramics are layer-by-layer designed and fabricated
via
isostatic lamination with the help of the Roll-to-Roll tape-casting technique. The relaxor ferroelectric BTBZNT ceramic is known for its high energy efficiency while the BTAS ceramic exhibits a higher breakdown strength. By combining their complementary advantages and the interfacial effect, a record-high dielectric breakdown strength of 790 kV cm
−1
is obtained in layer-by-layer structured bulk ceramics when four BTBZNT layers and four BTAS layers alternately arrange in parallel. The corresponding discharge energy density is 5.04 J cm
−3
, which is obviously much higher than that of BaTiO
3
-based ceramics (∼1–2 J cm
−3
). The mechanism by which the layer-by-layer structure can induce giant dielectric breakdown strength is studied
via
interface microstructure characterization and a phase-field breakdown model. In addition, the layer-by-layer structured ceramic shows an excellent temperature stability in the energy-storage performance. Under an applied electric field of 400 kV cm
−1
at 1 Hz, the variation of discharge energy density is less than ±5% over the temperature range from 25 °C to 170 °C. All these features indicate that this kind of layer-by-layer structured ceramic can be considered a promising candidate in high-voltage high-temperature energy-storage systems.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C9TA05182A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum oxide ; Barium titanates ; Bulk density ; Ceramics ; Density ; Dielectric breakdown ; Dielectric strength ; Electric fields ; Energy ; Energy efficiency ; Energy storage ; Ferroelectric materials ; Ferroelectricity ; Flux density ; High temperature ; High voltages ; Laminates ; Lamination ; Relaxors ; Shelf life ; Silicon dioxide ; Storage systems ; Tape casting ; Temperature effects</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (29), p.17283-17291</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-9dea7691384fd9b18e084f63c8e602f34dd7dda174ddb051bd65b467018f6edf3</citedby><cites>FETCH-LOGICAL-c296t-9dea7691384fd9b18e084f63c8e602f34dd7dda174ddb051bd65b467018f6edf3</cites><orcidid>0000-0001-8026-023X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Cai, Ziming</creatorcontrib><creatorcontrib>Zhu, Chaoqiong</creatorcontrib><creatorcontrib>Wang, Hongxian</creatorcontrib><creatorcontrib>Zhao, Peiyao</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><creatorcontrib>Li, Longtu</creatorcontrib><creatorcontrib>Wang, Xiaohui</creatorcontrib><title>Giant dielectric breakdown strength together with ultrahigh energy density in ferroelectric bulk ceramics via layer-by-layer engineering</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Designing of high breakdown strength and high energy density dielectric ceramics is an important but challenging issue in applications of energy-storage devices. In this work, BaTiO
3
@3 wt% Al
2
O
3
, 1 wt% SiO
2
(BTAS) and 0.87BaTiO
3
-0.13Bi(Zn
2/3
(Nb
0.85
Ta
0.15
)
1/3
)O
3
(BTBZNT) ferroelectric ceramics are layer-by-layer designed and fabricated
via
isostatic lamination with the help of the Roll-to-Roll tape-casting technique. The relaxor ferroelectric BTBZNT ceramic is known for its high energy efficiency while the BTAS ceramic exhibits a higher breakdown strength. By combining their complementary advantages and the interfacial effect, a record-high dielectric breakdown strength of 790 kV cm
−1
is obtained in layer-by-layer structured bulk ceramics when four BTBZNT layers and four BTAS layers alternately arrange in parallel. The corresponding discharge energy density is 5.04 J cm
−3
, which is obviously much higher than that of BaTiO
3
-based ceramics (∼1–2 J cm
−3
). The mechanism by which the layer-by-layer structure can induce giant dielectric breakdown strength is studied
via
interface microstructure characterization and a phase-field breakdown model. In addition, the layer-by-layer structured ceramic shows an excellent temperature stability in the energy-storage performance. Under an applied electric field of 400 kV cm
−1
at 1 Hz, the variation of discharge energy density is less than ±5% over the temperature range from 25 °C to 170 °C. All these features indicate that this kind of layer-by-layer structured ceramic can be considered a promising candidate in high-voltage high-temperature energy-storage systems.</description><subject>Aluminum oxide</subject><subject>Barium titanates</subject><subject>Bulk density</subject><subject>Ceramics</subject><subject>Density</subject><subject>Dielectric breakdown</subject><subject>Dielectric strength</subject><subject>Electric fields</subject><subject>Energy</subject><subject>Energy efficiency</subject><subject>Energy storage</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Flux density</subject><subject>High temperature</subject><subject>High voltages</subject><subject>Laminates</subject><subject>Lamination</subject><subject>Relaxors</subject><subject>Shelf life</subject><subject>Silicon dioxide</subject><subject>Storage systems</subject><subject>Tape casting</subject><subject>Temperature effects</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkF9LwzAUxYMoOOZe_AQB34Rq-i9NHsfQKQx8mc8lbW7bbF06bzJHv4Ef2-jEnZf7O3A4Fw4htzF7iFkqHxdyPWd5LJL5BZkkLGdRkUl--c9CXJOZcxsWJBjjUk7I19Io66k20EPt0dS0QlBbPRwtdR7Btr6jfmjBd4D0aII79B5VZ9qOggVsR6rBOuNHaixtAHE4Vx36La0B1c7Ujn4aRXs1AkbVGP1CKGiNBUBj2xty1ajewezvTsn789N68RKt3pavi_kqqhPJfSQ1qILLOBVZo2UVC2CBeFoL4Cxp0kzrQmsVFwGqMEaleV5lvGCxaDjoJp2Su1PvHoePAzhfboYD2vCyTBKeMJkHhdT9KVXj4BxCU-7R7BSOZczKn7HL89jpN99NdM8</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Cai, Ziming</creator><creator>Zhu, Chaoqiong</creator><creator>Wang, Hongxian</creator><creator>Zhao, Peiyao</creator><creator>Yu, Yan</creator><creator>Li, Longtu</creator><creator>Wang, Xiaohui</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8026-023X</orcidid></search><sort><creationdate>2019</creationdate><title>Giant dielectric breakdown strength together with ultrahigh energy density in ferroelectric bulk ceramics via layer-by-layer engineering</title><author>Cai, Ziming ; Zhu, Chaoqiong ; Wang, Hongxian ; Zhao, Peiyao ; Yu, Yan ; Li, Longtu ; Wang, Xiaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-9dea7691384fd9b18e084f63c8e602f34dd7dda174ddb051bd65b467018f6edf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum oxide</topic><topic>Barium titanates</topic><topic>Bulk density</topic><topic>Ceramics</topic><topic>Density</topic><topic>Dielectric breakdown</topic><topic>Dielectric strength</topic><topic>Electric fields</topic><topic>Energy</topic><topic>Energy efficiency</topic><topic>Energy storage</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Flux density</topic><topic>High temperature</topic><topic>High voltages</topic><topic>Laminates</topic><topic>Lamination</topic><topic>Relaxors</topic><topic>Shelf life</topic><topic>Silicon dioxide</topic><topic>Storage systems</topic><topic>Tape casting</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Ziming</creatorcontrib><creatorcontrib>Zhu, Chaoqiong</creatorcontrib><creatorcontrib>Wang, Hongxian</creatorcontrib><creatorcontrib>Zhao, Peiyao</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><creatorcontrib>Li, Longtu</creatorcontrib><creatorcontrib>Wang, Xiaohui</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Ziming</au><au>Zhu, Chaoqiong</au><au>Wang, Hongxian</au><au>Zhao, Peiyao</au><au>Yu, Yan</au><au>Li, Longtu</au><au>Wang, Xiaohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant dielectric breakdown strength together with ultrahigh energy density in ferroelectric bulk ceramics via layer-by-layer engineering</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>29</issue><spage>17283</spage><epage>17291</epage><pages>17283-17291</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Designing of high breakdown strength and high energy density dielectric ceramics is an important but challenging issue in applications of energy-storage devices. In this work, BaTiO
3
@3 wt% Al
2
O
3
, 1 wt% SiO
2
(BTAS) and 0.87BaTiO
3
-0.13Bi(Zn
2/3
(Nb
0.85
Ta
0.15
)
1/3
)O
3
(BTBZNT) ferroelectric ceramics are layer-by-layer designed and fabricated
via
isostatic lamination with the help of the Roll-to-Roll tape-casting technique. The relaxor ferroelectric BTBZNT ceramic is known for its high energy efficiency while the BTAS ceramic exhibits a higher breakdown strength. By combining their complementary advantages and the interfacial effect, a record-high dielectric breakdown strength of 790 kV cm
−1
is obtained in layer-by-layer structured bulk ceramics when four BTBZNT layers and four BTAS layers alternately arrange in parallel. The corresponding discharge energy density is 5.04 J cm
−3
, which is obviously much higher than that of BaTiO
3
-based ceramics (∼1–2 J cm
−3
). The mechanism by which the layer-by-layer structure can induce giant dielectric breakdown strength is studied
via
interface microstructure characterization and a phase-field breakdown model. In addition, the layer-by-layer structured ceramic shows an excellent temperature stability in the energy-storage performance. Under an applied electric field of 400 kV cm
−1
at 1 Hz, the variation of discharge energy density is less than ±5% over the temperature range from 25 °C to 170 °C. All these features indicate that this kind of layer-by-layer structured ceramic can be considered a promising candidate in high-voltage high-temperature energy-storage systems.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C9TA05182A</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8026-023X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (29), p.17283-17291 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2262095555 |
source | Royal Society of Chemistry |
subjects | Aluminum oxide Barium titanates Bulk density Ceramics Density Dielectric breakdown Dielectric strength Electric fields Energy Energy efficiency Energy storage Ferroelectric materials Ferroelectricity Flux density High temperature High voltages Laminates Lamination Relaxors Shelf life Silicon dioxide Storage systems Tape casting Temperature effects |
title | Giant dielectric breakdown strength together with ultrahigh energy density in ferroelectric bulk ceramics via layer-by-layer engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A06%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20dielectric%20breakdown%20strength%20together%20with%20ultrahigh%20energy%20density%20in%20ferroelectric%20bulk%20ceramics%20via%20layer-by-layer%20engineering&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Cai,%20Ziming&rft.date=2019&rft.volume=7&rft.issue=29&rft.spage=17283&rft.epage=17291&rft.pages=17283-17291&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C9TA05182A&rft_dat=%3Cproquest_cross%3E2262095555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262095555&rft_id=info:pmid/&rfr_iscdi=true |