Systematic exploration of N, C configurational effects on the ORR performance of Fe-N doped graphene catalysts based on DFT calculations
Metal single-atom catalysts (MSATs), such as Fe-N coordination doped sp 2 -carbon matrices, have emerged as a promising oxygen reduction reaction (ORR) catalyst to replace their costly platinum (Pt) based counterparts in fuel cells. In this work, we employ density functional theory (DFT) to systemat...
Gespeichert in:
Veröffentlicht in: | RSC advances 2019-07, Vol.9 (39), p.22656-22667 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22667 |
---|---|
container_issue | 39 |
container_start_page | 22656 |
container_title | RSC advances |
container_volume | 9 |
creator | Liu, Fan Zhu, Guangqi Yang, Dongzi Jia, Dong Jin, Fengmin Wang, Wei |
description | Metal single-atom catalysts (MSATs), such as Fe-N coordination doped sp
2
-carbon matrices, have emerged as a promising oxygen reduction reaction (ORR) catalyst to replace their costly platinum (Pt) based counterparts in fuel cells. In this work, we employ density functional theory (DFT) to systematically discuss the electronic-structure and surface-stress effects of N, C configurations on Fe-N doped graphene in single and double vacancy. The formation energy (
E
f
) of Fe-N-gra dropped off with the increase of N atoms incorporated for both single and double vacancy groups. The theoretical overpotentials on Fe-N-C sites were calculated and revealed that moderate N-doping levels and doping configuration could enhance the ORR activity of Fe-N coordination structures in the double vacancy and that doping N atoms is not effective for ORR activity in single vacancy. By exploring the d-band centers, we found that ligand effects and surface tension effects contribute to the modification of the d-band centers of metal Fe atoms. An optimum Fe-N-C ORR catalyst should exhibit moderate surface stress properties and an ideal N, C ligand configuration. This study provides new insight into the effects of N atom doping in Fe-N-gra catalysts and could help guide the rational design of high-performance carbon-based ORR electrocatalysts.
An optimum Fe-N-C ORR catalyst should exhibit a moderate surface stress property and an ideal N, C ligand configurations that results in a moderate interaction between the ORR intermediates and its surface sites. |
doi_str_mv | 10.1039/c9ra02822f |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2262095475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661077588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-b6400d830a6552bb39e51f1a5d7b26ef2dd4eb7dbcccbdbafb31ea010eee15763</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiNERavSC3eQJS6oImA7sRNfkKotC5WqVlrK2fLHeDeVE6d2gug_6M-u2y1LwRePZp55Z-TXRfGG4E8EV-KzEVFh2lLqXhQHFNe8pJiLl8_i_eIopWucD2eEcvKq2K8YI6IW9UFx9-M2TdCrqTMIfo8-xByGAQWHLj6iBTJhcN163maVR-AcmCmhjEwbQJerFRohuhB7NRh4aFtCeYFsGMGidVTjBgZARk3K50EJaZVyIXefLq9y2pvZP0qn18WeUz7B0dN9WPxcfr1afC_PL7-dLU7OS1PTdio1rzG2bYUVZ4xqXQlgxBHFbKMpB0etrUE3VhtjtNXK6YqAwgQDAGENrw6LL1vdcdY9WAPDFJWXY-x6FW9lUJ38tzJ0G7kOv6TAvMG0ygIfngRiuJkhTbLvkgHv1QBhTpJyTnDTsLbN6Pv_0Oswx_yMmaKcYsHqhmXqeEuZGFKK4HbLECwfPJYLsTp59HiZ4XfP19-hfxzNwNstEJPZVf9-kuoe356uFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262095475</pqid></control><display><type>article</type><title>Systematic exploration of N, C configurational effects on the ORR performance of Fe-N doped graphene catalysts based on DFT calculations</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Liu, Fan ; Zhu, Guangqi ; Yang, Dongzi ; Jia, Dong ; Jin, Fengmin ; Wang, Wei</creator><creatorcontrib>Liu, Fan ; Zhu, Guangqi ; Yang, Dongzi ; Jia, Dong ; Jin, Fengmin ; Wang, Wei</creatorcontrib><description>Metal single-atom catalysts (MSATs), such as Fe-N coordination doped sp
2
-carbon matrices, have emerged as a promising oxygen reduction reaction (ORR) catalyst to replace their costly platinum (Pt) based counterparts in fuel cells. In this work, we employ density functional theory (DFT) to systematically discuss the electronic-structure and surface-stress effects of N, C configurations on Fe-N doped graphene in single and double vacancy. The formation energy (
E
f
) of Fe-N-gra dropped off with the increase of N atoms incorporated for both single and double vacancy groups. The theoretical overpotentials on Fe-N-C sites were calculated and revealed that moderate N-doping levels and doping configuration could enhance the ORR activity of Fe-N coordination structures in the double vacancy and that doping N atoms is not effective for ORR activity in single vacancy. By exploring the d-band centers, we found that ligand effects and surface tension effects contribute to the modification of the d-band centers of metal Fe atoms. An optimum Fe-N-C ORR catalyst should exhibit moderate surface stress properties and an ideal N, C ligand configuration. This study provides new insight into the effects of N atom doping in Fe-N-gra catalysts and could help guide the rational design of high-performance carbon-based ORR electrocatalysts.
An optimum Fe-N-C ORR catalyst should exhibit a moderate surface stress property and an ideal N, C ligand configurations that results in a moderate interaction between the ORR intermediates and its surface sites.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c9ra02822f</identifier><identifier>PMID: 35519494</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Carbon ; Catalysis ; Chemistry ; Configurations ; Coordination ; Density functional theory ; Doping ; Electrocatalysts ; Electronic structure ; Free energy ; Fuel cells ; Graphene ; Heat of formation ; Iron ; Ligands ; Mathematical analysis ; Oxygen reduction reactions ; Platinum ; Single atom catalysts ; Surface tension ; Vacancies</subject><ispartof>RSC advances, 2019-07, Vol.9 (39), p.22656-22667</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-b6400d830a6552bb39e51f1a5d7b26ef2dd4eb7dbcccbdbafb31ea010eee15763</citedby><cites>FETCH-LOGICAL-c428t-b6400d830a6552bb39e51f1a5d7b26ef2dd4eb7dbcccbdbafb31ea010eee15763</cites><orcidid>0000-0002-5250-2200 ; 0000-0002-2807-7996 ; 0000-0002-8561-1315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067023/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067023/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35519494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Fan</creatorcontrib><creatorcontrib>Zhu, Guangqi</creatorcontrib><creatorcontrib>Yang, Dongzi</creatorcontrib><creatorcontrib>Jia, Dong</creatorcontrib><creatorcontrib>Jin, Fengmin</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><title>Systematic exploration of N, C configurational effects on the ORR performance of Fe-N doped graphene catalysts based on DFT calculations</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Metal single-atom catalysts (MSATs), such as Fe-N coordination doped sp
2
-carbon matrices, have emerged as a promising oxygen reduction reaction (ORR) catalyst to replace their costly platinum (Pt) based counterparts in fuel cells. In this work, we employ density functional theory (DFT) to systematically discuss the electronic-structure and surface-stress effects of N, C configurations on Fe-N doped graphene in single and double vacancy. The formation energy (
E
f
) of Fe-N-gra dropped off with the increase of N atoms incorporated for both single and double vacancy groups. The theoretical overpotentials on Fe-N-C sites were calculated and revealed that moderate N-doping levels and doping configuration could enhance the ORR activity of Fe-N coordination structures in the double vacancy and that doping N atoms is not effective for ORR activity in single vacancy. By exploring the d-band centers, we found that ligand effects and surface tension effects contribute to the modification of the d-band centers of metal Fe atoms. An optimum Fe-N-C ORR catalyst should exhibit moderate surface stress properties and an ideal N, C ligand configuration. This study provides new insight into the effects of N atom doping in Fe-N-gra catalysts and could help guide the rational design of high-performance carbon-based ORR electrocatalysts.
An optimum Fe-N-C ORR catalyst should exhibit a moderate surface stress property and an ideal N, C ligand configurations that results in a moderate interaction between the ORR intermediates and its surface sites.</description><subject>Carbon</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Configurations</subject><subject>Coordination</subject><subject>Density functional theory</subject><subject>Doping</subject><subject>Electrocatalysts</subject><subject>Electronic structure</subject><subject>Free energy</subject><subject>Fuel cells</subject><subject>Graphene</subject><subject>Heat of formation</subject><subject>Iron</subject><subject>Ligands</subject><subject>Mathematical analysis</subject><subject>Oxygen reduction reactions</subject><subject>Platinum</subject><subject>Single atom catalysts</subject><subject>Surface tension</subject><subject>Vacancies</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkk1v1DAQhiNERavSC3eQJS6oImA7sRNfkKotC5WqVlrK2fLHeDeVE6d2gug_6M-u2y1LwRePZp55Z-TXRfGG4E8EV-KzEVFh2lLqXhQHFNe8pJiLl8_i_eIopWucD2eEcvKq2K8YI6IW9UFx9-M2TdCrqTMIfo8-xByGAQWHLj6iBTJhcN163maVR-AcmCmhjEwbQJerFRohuhB7NRh4aFtCeYFsGMGidVTjBgZARk3K50EJaZVyIXefLq9y2pvZP0qn18WeUz7B0dN9WPxcfr1afC_PL7-dLU7OS1PTdio1rzG2bYUVZ4xqXQlgxBHFbKMpB0etrUE3VhtjtNXK6YqAwgQDAGENrw6LL1vdcdY9WAPDFJWXY-x6FW9lUJ38tzJ0G7kOv6TAvMG0ygIfngRiuJkhTbLvkgHv1QBhTpJyTnDTsLbN6Pv_0Oswx_yMmaKcYsHqhmXqeEuZGFKK4HbLECwfPJYLsTp59HiZ4XfP19-hfxzNwNstEJPZVf9-kuoe356uFg</recordid><startdate>20190723</startdate><enddate>20190723</enddate><creator>Liu, Fan</creator><creator>Zhu, Guangqi</creator><creator>Yang, Dongzi</creator><creator>Jia, Dong</creator><creator>Jin, Fengmin</creator><creator>Wang, Wei</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5250-2200</orcidid><orcidid>https://orcid.org/0000-0002-2807-7996</orcidid><orcidid>https://orcid.org/0000-0002-8561-1315</orcidid></search><sort><creationdate>20190723</creationdate><title>Systematic exploration of N, C configurational effects on the ORR performance of Fe-N doped graphene catalysts based on DFT calculations</title><author>Liu, Fan ; Zhu, Guangqi ; Yang, Dongzi ; Jia, Dong ; Jin, Fengmin ; Wang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-b6400d830a6552bb39e51f1a5d7b26ef2dd4eb7dbcccbdbafb31ea010eee15763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Configurations</topic><topic>Coordination</topic><topic>Density functional theory</topic><topic>Doping</topic><topic>Electrocatalysts</topic><topic>Electronic structure</topic><topic>Free energy</topic><topic>Fuel cells</topic><topic>Graphene</topic><topic>Heat of formation</topic><topic>Iron</topic><topic>Ligands</topic><topic>Mathematical analysis</topic><topic>Oxygen reduction reactions</topic><topic>Platinum</topic><topic>Single atom catalysts</topic><topic>Surface tension</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fan</creatorcontrib><creatorcontrib>Zhu, Guangqi</creatorcontrib><creatorcontrib>Yang, Dongzi</creatorcontrib><creatorcontrib>Jia, Dong</creatorcontrib><creatorcontrib>Jin, Fengmin</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Fan</au><au>Zhu, Guangqi</au><au>Yang, Dongzi</au><au>Jia, Dong</au><au>Jin, Fengmin</au><au>Wang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic exploration of N, C configurational effects on the ORR performance of Fe-N doped graphene catalysts based on DFT calculations</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2019-07-23</date><risdate>2019</risdate><volume>9</volume><issue>39</issue><spage>22656</spage><epage>22667</epage><pages>22656-22667</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Metal single-atom catalysts (MSATs), such as Fe-N coordination doped sp
2
-carbon matrices, have emerged as a promising oxygen reduction reaction (ORR) catalyst to replace their costly platinum (Pt) based counterparts in fuel cells. In this work, we employ density functional theory (DFT) to systematically discuss the electronic-structure and surface-stress effects of N, C configurations on Fe-N doped graphene in single and double vacancy. The formation energy (
E
f
) of Fe-N-gra dropped off with the increase of N atoms incorporated for both single and double vacancy groups. The theoretical overpotentials on Fe-N-C sites were calculated and revealed that moderate N-doping levels and doping configuration could enhance the ORR activity of Fe-N coordination structures in the double vacancy and that doping N atoms is not effective for ORR activity in single vacancy. By exploring the d-band centers, we found that ligand effects and surface tension effects contribute to the modification of the d-band centers of metal Fe atoms. An optimum Fe-N-C ORR catalyst should exhibit moderate surface stress properties and an ideal N, C ligand configuration. This study provides new insight into the effects of N atom doping in Fe-N-gra catalysts and could help guide the rational design of high-performance carbon-based ORR electrocatalysts.
An optimum Fe-N-C ORR catalyst should exhibit a moderate surface stress property and an ideal N, C ligand configurations that results in a moderate interaction between the ORR intermediates and its surface sites.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35519494</pmid><doi>10.1039/c9ra02822f</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5250-2200</orcidid><orcidid>https://orcid.org/0000-0002-2807-7996</orcidid><orcidid>https://orcid.org/0000-0002-8561-1315</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2019-07, Vol.9 (39), p.22656-22667 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_proquest_journals_2262095475 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Carbon Catalysis Chemistry Configurations Coordination Density functional theory Doping Electrocatalysts Electronic structure Free energy Fuel cells Graphene Heat of formation Iron Ligands Mathematical analysis Oxygen reduction reactions Platinum Single atom catalysts Surface tension Vacancies |
title | Systematic exploration of N, C configurational effects on the ORR performance of Fe-N doped graphene catalysts based on DFT calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20exploration%20of%20N,%20C%20configurational%20effects%20on%20the%20ORR%20performance%20of%20Fe-N%20doped%20graphene%20catalysts%20based%20on%20DFT%20calculations&rft.jtitle=RSC%20advances&rft.au=Liu,%20Fan&rft.date=2019-07-23&rft.volume=9&rft.issue=39&rft.spage=22656&rft.epage=22667&rft.pages=22656-22667&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c9ra02822f&rft_dat=%3Cproquest_pubme%3E2661077588%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262095475&rft_id=info:pmid/35519494&rfr_iscdi=true |