Electrical conductivity of synthetic iron-bearing olivine
The electrical conduction in synthetic, dry polycrystalline, iron-bearing olivine (Fo 90 ) was investigated as a first-order approach to the electrical conductivity in the upper mantle. This fundamental study is of great importance to better understand the charge-transport mechanisms seen in olivine...
Gespeichert in:
Veröffentlicht in: | Physics and chemistry of minerals 2010-03, Vol.37 (3), p.167-178 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 178 |
---|---|
container_issue | 3 |
container_start_page | 167 |
container_title | Physics and chemistry of minerals |
container_volume | 37 |
creator | Farla, Robert J. M. Peach, C. J. ten Grotenhuis, S. M. |
description | The electrical conduction in synthetic, dry polycrystalline, iron-bearing olivine (Fo
90
) was investigated as a first-order approach to the electrical conductivity in the upper mantle. This fundamental study is of great importance to better understand the charge-transport mechanisms seen in olivine. Conduction processes in synthetic samples are not influenced by a complex geological history in contrast to conductivity in natural olivine. The experiments show that the apparent activation energy for conductivity for Fo
90
is 230 kJ mol
−1
. In currently accepted defect modeling, natural and synthetic olivine requires a mechanism involving small polaron formation (Fe
·
Mg
and magnesium vacancies (
V
Mg
) as the dominant diffusing species to explain a
f
O
2
1/6
relation to electrical conduction. Here, Fo
90
shows no contribution of small polarons to conductivity at temperatures between 1,000 and 1,200°C and almost no dependence on
f
O
2
. Instead, under reducing conditions magnesium vacancies (and electrons) appear to be the major charge carriers. |
doi_str_mv | 10.1007/s00269-009-0321-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262087601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262087601</sourcerecordid><originalsourceid>FETCH-LOGICAL-a448t-51928dbcd437347673f1f09004e9a30ebbfb4011ee890359be6fb7030c1b13183</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMkm42Ryn1Awpe9Bw2aaIp66YmqdB_b8oKnjwMc5j3g3kIuUa4RQB5lwFYqyhAHc6Q8hMyQ8EZZcDwlMyAC0ZRKjwnFzlvAepRLmZErQZnSwq2Hxobx83elvAdyqGJvsmHsXy4EmwTUhypcX0K43sTh6oY3SU58_2Q3dXvnpO3h9Xr8omuXx6fl_dr2gvRFbpAxbqNsZvax4VsJffoQQEIp3oOzhhvBCA61yngC2Vc640EDhYNcuz4nNxMubsUv_YuF72N-zTWSs1Yy6CTLWBV4aSyKeacnNe7FD77dNAI-khIT4R0JaSPhDSvHjZ58u74mEt_yf-bfgBH6meK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262087601</pqid></control><display><type>article</type><title>Electrical conductivity of synthetic iron-bearing olivine</title><source>SpringerLink Journals - AutoHoldings</source><creator>Farla, Robert J. M. ; Peach, C. J. ; ten Grotenhuis, S. M.</creator><creatorcontrib>Farla, Robert J. M. ; Peach, C. J. ; ten Grotenhuis, S. M.</creatorcontrib><description>The electrical conduction in synthetic, dry polycrystalline, iron-bearing olivine (Fo
90
) was investigated as a first-order approach to the electrical conductivity in the upper mantle. This fundamental study is of great importance to better understand the charge-transport mechanisms seen in olivine. Conduction processes in synthetic samples are not influenced by a complex geological history in contrast to conductivity in natural olivine. The experiments show that the apparent activation energy for conductivity for Fo
90
is 230 kJ mol
−1
. In currently accepted defect modeling, natural and synthetic olivine requires a mechanism involving small polaron formation (Fe
·
Mg
and magnesium vacancies (
V
Mg
) as the dominant diffusing species to explain a
f
O
2
1/6
relation to electrical conduction. Here, Fo
90
shows no contribution of small polarons to conductivity at temperatures between 1,000 and 1,200°C and almost no dependence on
f
O
2
. Instead, under reducing conditions magnesium vacancies (and electrons) appear to be the major charge carriers.</description><identifier>ISSN: 0342-1791</identifier><identifier>EISSN: 1432-2021</identifier><identifier>DOI: 10.1007/s00269-009-0321-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Bearing ; Charge transport ; Crystallography and Scattering Methods ; Current carriers ; Dependence ; Earth and Environmental Science ; Earth Sciences ; Electrical conduction ; Electrical resistivity ; Geochemistry ; Geological history ; Iron ; Magnesium ; Mineral Resources ; Mineralogy ; Olivine ; Original Paper ; Polarons ; Species diffusion ; Upper mantle ; Vacancies</subject><ispartof>Physics and chemistry of minerals, 2010-03, Vol.37 (3), p.167-178</ispartof><rights>The Author(s) 2009</rights><rights>Physics and Chemistry of Minerals is a copyright of Springer, (2009). All Rights Reserved. © 2009. This work is published under https://creativecommons.org/licenses/by-nc/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a448t-51928dbcd437347673f1f09004e9a30ebbfb4011ee890359be6fb7030c1b13183</citedby><cites>FETCH-LOGICAL-a448t-51928dbcd437347673f1f09004e9a30ebbfb4011ee890359be6fb7030c1b13183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00269-009-0321-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00269-009-0321-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Farla, Robert J. M.</creatorcontrib><creatorcontrib>Peach, C. J.</creatorcontrib><creatorcontrib>ten Grotenhuis, S. M.</creatorcontrib><title>Electrical conductivity of synthetic iron-bearing olivine</title><title>Physics and chemistry of minerals</title><addtitle>Phys Chem Minerals</addtitle><description>The electrical conduction in synthetic, dry polycrystalline, iron-bearing olivine (Fo
90
) was investigated as a first-order approach to the electrical conductivity in the upper mantle. This fundamental study is of great importance to better understand the charge-transport mechanisms seen in olivine. Conduction processes in synthetic samples are not influenced by a complex geological history in contrast to conductivity in natural olivine. The experiments show that the apparent activation energy for conductivity for Fo
90
is 230 kJ mol
−1
. In currently accepted defect modeling, natural and synthetic olivine requires a mechanism involving small polaron formation (Fe
·
Mg
and magnesium vacancies (
V
Mg
) as the dominant diffusing species to explain a
f
O
2
1/6
relation to electrical conduction. Here, Fo
90
shows no contribution of small polarons to conductivity at temperatures between 1,000 and 1,200°C and almost no dependence on
f
O
2
. Instead, under reducing conditions magnesium vacancies (and electrons) appear to be the major charge carriers.</description><subject>Bearing</subject><subject>Charge transport</subject><subject>Crystallography and Scattering Methods</subject><subject>Current carriers</subject><subject>Dependence</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical conduction</subject><subject>Electrical resistivity</subject><subject>Geochemistry</subject><subject>Geological history</subject><subject>Iron</subject><subject>Magnesium</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Olivine</subject><subject>Original Paper</subject><subject>Polarons</subject><subject>Species diffusion</subject><subject>Upper mantle</subject><subject>Vacancies</subject><issn>0342-1791</issn><issn>1432-2021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMkm42Ryn1Awpe9Bw2aaIp66YmqdB_b8oKnjwMc5j3g3kIuUa4RQB5lwFYqyhAHc6Q8hMyQ8EZZcDwlMyAC0ZRKjwnFzlvAepRLmZErQZnSwq2Hxobx83elvAdyqGJvsmHsXy4EmwTUhypcX0K43sTh6oY3SU58_2Q3dXvnpO3h9Xr8omuXx6fl_dr2gvRFbpAxbqNsZvax4VsJffoQQEIp3oOzhhvBCA61yngC2Vc640EDhYNcuz4nNxMubsUv_YuF72N-zTWSs1Yy6CTLWBV4aSyKeacnNe7FD77dNAI-khIT4R0JaSPhDSvHjZ58u74mEt_yf-bfgBH6meK</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Farla, Robert J. M.</creator><creator>Peach, C. J.</creator><creator>ten Grotenhuis, S. M.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20100301</creationdate><title>Electrical conductivity of synthetic iron-bearing olivine</title><author>Farla, Robert J. M. ; Peach, C. J. ; ten Grotenhuis, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a448t-51928dbcd437347673f1f09004e9a30ebbfb4011ee890359be6fb7030c1b13183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bearing</topic><topic>Charge transport</topic><topic>Crystallography and Scattering Methods</topic><topic>Current carriers</topic><topic>Dependence</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical conduction</topic><topic>Electrical resistivity</topic><topic>Geochemistry</topic><topic>Geological history</topic><topic>Iron</topic><topic>Magnesium</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Olivine</topic><topic>Original Paper</topic><topic>Polarons</topic><topic>Species diffusion</topic><topic>Upper mantle</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farla, Robert J. M.</creatorcontrib><creatorcontrib>Peach, C. J.</creatorcontrib><creatorcontrib>ten Grotenhuis, S. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Physics and chemistry of minerals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farla, Robert J. M.</au><au>Peach, C. J.</au><au>ten Grotenhuis, S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical conductivity of synthetic iron-bearing olivine</atitle><jtitle>Physics and chemistry of minerals</jtitle><stitle>Phys Chem Minerals</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>37</volume><issue>3</issue><spage>167</spage><epage>178</epage><pages>167-178</pages><issn>0342-1791</issn><eissn>1432-2021</eissn><abstract>The electrical conduction in synthetic, dry polycrystalline, iron-bearing olivine (Fo
90
) was investigated as a first-order approach to the electrical conductivity in the upper mantle. This fundamental study is of great importance to better understand the charge-transport mechanisms seen in olivine. Conduction processes in synthetic samples are not influenced by a complex geological history in contrast to conductivity in natural olivine. The experiments show that the apparent activation energy for conductivity for Fo
90
is 230 kJ mol
−1
. In currently accepted defect modeling, natural and synthetic olivine requires a mechanism involving small polaron formation (Fe
·
Mg
and magnesium vacancies (
V
Mg
) as the dominant diffusing species to explain a
f
O
2
1/6
relation to electrical conduction. Here, Fo
90
shows no contribution of small polarons to conductivity at temperatures between 1,000 and 1,200°C and almost no dependence on
f
O
2
. Instead, under reducing conditions magnesium vacancies (and electrons) appear to be the major charge carriers.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00269-009-0321-3</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0342-1791 |
ispartof | Physics and chemistry of minerals, 2010-03, Vol.37 (3), p.167-178 |
issn | 0342-1791 1432-2021 |
language | eng |
recordid | cdi_proquest_journals_2262087601 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bearing Charge transport Crystallography and Scattering Methods Current carriers Dependence Earth and Environmental Science Earth Sciences Electrical conduction Electrical resistivity Geochemistry Geological history Iron Magnesium Mineral Resources Mineralogy Olivine Original Paper Polarons Species diffusion Upper mantle Vacancies |
title | Electrical conductivity of synthetic iron-bearing olivine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20conductivity%20of%20synthetic%20iron-bearing%20olivine&rft.jtitle=Physics%20and%20chemistry%20of%20minerals&rft.au=Farla,%20Robert%20J.%20M.&rft.date=2010-03-01&rft.volume=37&rft.issue=3&rft.spage=167&rft.epage=178&rft.pages=167-178&rft.issn=0342-1791&rft.eissn=1432-2021&rft_id=info:doi/10.1007/s00269-009-0321-3&rft_dat=%3Cproquest_cross%3E2262087601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262087601&rft_id=info:pmid/&rfr_iscdi=true |