Electrical conductivity of synthetic iron-bearing olivine

The electrical conduction in synthetic, dry polycrystalline, iron-bearing olivine (Fo 90 ) was investigated as a first-order approach to the electrical conductivity in the upper mantle. This fundamental study is of great importance to better understand the charge-transport mechanisms seen in olivine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics and chemistry of minerals 2010-03, Vol.37 (3), p.167-178
Hauptverfasser: Farla, Robert J. M., Peach, C. J., ten Grotenhuis, S. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 178
container_issue 3
container_start_page 167
container_title Physics and chemistry of minerals
container_volume 37
creator Farla, Robert J. M.
Peach, C. J.
ten Grotenhuis, S. M.
description The electrical conduction in synthetic, dry polycrystalline, iron-bearing olivine (Fo 90 ) was investigated as a first-order approach to the electrical conductivity in the upper mantle. This fundamental study is of great importance to better understand the charge-transport mechanisms seen in olivine. Conduction processes in synthetic samples are not influenced by a complex geological history in contrast to conductivity in natural olivine. The experiments show that the apparent activation energy for conductivity for Fo 90 is 230 kJ mol −1 . In currently accepted defect modeling, natural and synthetic olivine requires a mechanism involving small polaron formation (Fe · Mg and magnesium vacancies ( V Mg ) as the dominant diffusing species to explain a f O 2 1/6 relation to electrical conduction. Here, Fo 90 shows no contribution of small polarons to conductivity at temperatures between 1,000 and 1,200°C and almost no dependence on f O 2 . Instead, under reducing conditions magnesium vacancies (and electrons) appear to be the major charge carriers.
doi_str_mv 10.1007/s00269-009-0321-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262087601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262087601</sourcerecordid><originalsourceid>FETCH-LOGICAL-a448t-51928dbcd437347673f1f09004e9a30ebbfb4011ee890359be6fb7030c1b13183</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMkm42Ryn1Awpe9Bw2aaIp66YmqdB_b8oKnjwMc5j3g3kIuUa4RQB5lwFYqyhAHc6Q8hMyQ8EZZcDwlMyAC0ZRKjwnFzlvAepRLmZErQZnSwq2Hxobx83elvAdyqGJvsmHsXy4EmwTUhypcX0K43sTh6oY3SU58_2Q3dXvnpO3h9Xr8omuXx6fl_dr2gvRFbpAxbqNsZvax4VsJffoQQEIp3oOzhhvBCA61yngC2Vc640EDhYNcuz4nNxMubsUv_YuF72N-zTWSs1Yy6CTLWBV4aSyKeacnNe7FD77dNAI-khIT4R0JaSPhDSvHjZ58u74mEt_yf-bfgBH6meK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262087601</pqid></control><display><type>article</type><title>Electrical conductivity of synthetic iron-bearing olivine</title><source>SpringerLink Journals - AutoHoldings</source><creator>Farla, Robert J. M. ; Peach, C. J. ; ten Grotenhuis, S. M.</creator><creatorcontrib>Farla, Robert J. M. ; Peach, C. J. ; ten Grotenhuis, S. M.</creatorcontrib><description>The electrical conduction in synthetic, dry polycrystalline, iron-bearing olivine (Fo 90 ) was investigated as a first-order approach to the electrical conductivity in the upper mantle. This fundamental study is of great importance to better understand the charge-transport mechanisms seen in olivine. Conduction processes in synthetic samples are not influenced by a complex geological history in contrast to conductivity in natural olivine. The experiments show that the apparent activation energy for conductivity for Fo 90 is 230 kJ mol −1 . In currently accepted defect modeling, natural and synthetic olivine requires a mechanism involving small polaron formation (Fe · Mg and magnesium vacancies ( V Mg ) as the dominant diffusing species to explain a f O 2 1/6 relation to electrical conduction. Here, Fo 90 shows no contribution of small polarons to conductivity at temperatures between 1,000 and 1,200°C and almost no dependence on f O 2 . Instead, under reducing conditions magnesium vacancies (and electrons) appear to be the major charge carriers.</description><identifier>ISSN: 0342-1791</identifier><identifier>EISSN: 1432-2021</identifier><identifier>DOI: 10.1007/s00269-009-0321-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Bearing ; Charge transport ; Crystallography and Scattering Methods ; Current carriers ; Dependence ; Earth and Environmental Science ; Earth Sciences ; Electrical conduction ; Electrical resistivity ; Geochemistry ; Geological history ; Iron ; Magnesium ; Mineral Resources ; Mineralogy ; Olivine ; Original Paper ; Polarons ; Species diffusion ; Upper mantle ; Vacancies</subject><ispartof>Physics and chemistry of minerals, 2010-03, Vol.37 (3), p.167-178</ispartof><rights>The Author(s) 2009</rights><rights>Physics and Chemistry of Minerals is a copyright of Springer, (2009). All Rights Reserved. © 2009. This work is published under https://creativecommons.org/licenses/by-nc/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a448t-51928dbcd437347673f1f09004e9a30ebbfb4011ee890359be6fb7030c1b13183</citedby><cites>FETCH-LOGICAL-a448t-51928dbcd437347673f1f09004e9a30ebbfb4011ee890359be6fb7030c1b13183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00269-009-0321-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00269-009-0321-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Farla, Robert J. M.</creatorcontrib><creatorcontrib>Peach, C. J.</creatorcontrib><creatorcontrib>ten Grotenhuis, S. M.</creatorcontrib><title>Electrical conductivity of synthetic iron-bearing olivine</title><title>Physics and chemistry of minerals</title><addtitle>Phys Chem Minerals</addtitle><description>The electrical conduction in synthetic, dry polycrystalline, iron-bearing olivine (Fo 90 ) was investigated as a first-order approach to the electrical conductivity in the upper mantle. This fundamental study is of great importance to better understand the charge-transport mechanisms seen in olivine. Conduction processes in synthetic samples are not influenced by a complex geological history in contrast to conductivity in natural olivine. The experiments show that the apparent activation energy for conductivity for Fo 90 is 230 kJ mol −1 . In currently accepted defect modeling, natural and synthetic olivine requires a mechanism involving small polaron formation (Fe · Mg and magnesium vacancies ( V Mg ) as the dominant diffusing species to explain a f O 2 1/6 relation to electrical conduction. Here, Fo 90 shows no contribution of small polarons to conductivity at temperatures between 1,000 and 1,200°C and almost no dependence on f O 2 . Instead, under reducing conditions magnesium vacancies (and electrons) appear to be the major charge carriers.</description><subject>Bearing</subject><subject>Charge transport</subject><subject>Crystallography and Scattering Methods</subject><subject>Current carriers</subject><subject>Dependence</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical conduction</subject><subject>Electrical resistivity</subject><subject>Geochemistry</subject><subject>Geological history</subject><subject>Iron</subject><subject>Magnesium</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Olivine</subject><subject>Original Paper</subject><subject>Polarons</subject><subject>Species diffusion</subject><subject>Upper mantle</subject><subject>Vacancies</subject><issn>0342-1791</issn><issn>1432-2021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMkm42Ryn1Awpe9Bw2aaIp66YmqdB_b8oKnjwMc5j3g3kIuUa4RQB5lwFYqyhAHc6Q8hMyQ8EZZcDwlMyAC0ZRKjwnFzlvAepRLmZErQZnSwq2Hxobx83elvAdyqGJvsmHsXy4EmwTUhypcX0K43sTh6oY3SU58_2Q3dXvnpO3h9Xr8omuXx6fl_dr2gvRFbpAxbqNsZvax4VsJffoQQEIp3oOzhhvBCA61yngC2Vc640EDhYNcuz4nNxMubsUv_YuF72N-zTWSs1Yy6CTLWBV4aSyKeacnNe7FD77dNAI-khIT4R0JaSPhDSvHjZ58u74mEt_yf-bfgBH6meK</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Farla, Robert J. M.</creator><creator>Peach, C. J.</creator><creator>ten Grotenhuis, S. M.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20100301</creationdate><title>Electrical conductivity of synthetic iron-bearing olivine</title><author>Farla, Robert J. M. ; Peach, C. J. ; ten Grotenhuis, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a448t-51928dbcd437347673f1f09004e9a30ebbfb4011ee890359be6fb7030c1b13183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bearing</topic><topic>Charge transport</topic><topic>Crystallography and Scattering Methods</topic><topic>Current carriers</topic><topic>Dependence</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical conduction</topic><topic>Electrical resistivity</topic><topic>Geochemistry</topic><topic>Geological history</topic><topic>Iron</topic><topic>Magnesium</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Olivine</topic><topic>Original Paper</topic><topic>Polarons</topic><topic>Species diffusion</topic><topic>Upper mantle</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farla, Robert J. M.</creatorcontrib><creatorcontrib>Peach, C. J.</creatorcontrib><creatorcontrib>ten Grotenhuis, S. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Physics and chemistry of minerals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farla, Robert J. M.</au><au>Peach, C. J.</au><au>ten Grotenhuis, S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical conductivity of synthetic iron-bearing olivine</atitle><jtitle>Physics and chemistry of minerals</jtitle><stitle>Phys Chem Minerals</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>37</volume><issue>3</issue><spage>167</spage><epage>178</epage><pages>167-178</pages><issn>0342-1791</issn><eissn>1432-2021</eissn><abstract>The electrical conduction in synthetic, dry polycrystalline, iron-bearing olivine (Fo 90 ) was investigated as a first-order approach to the electrical conductivity in the upper mantle. This fundamental study is of great importance to better understand the charge-transport mechanisms seen in olivine. Conduction processes in synthetic samples are not influenced by a complex geological history in contrast to conductivity in natural olivine. The experiments show that the apparent activation energy for conductivity for Fo 90 is 230 kJ mol −1 . In currently accepted defect modeling, natural and synthetic olivine requires a mechanism involving small polaron formation (Fe · Mg and magnesium vacancies ( V Mg ) as the dominant diffusing species to explain a f O 2 1/6 relation to electrical conduction. Here, Fo 90 shows no contribution of small polarons to conductivity at temperatures between 1,000 and 1,200°C and almost no dependence on f O 2 . Instead, under reducing conditions magnesium vacancies (and electrons) appear to be the major charge carriers.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00269-009-0321-3</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0342-1791
ispartof Physics and chemistry of minerals, 2010-03, Vol.37 (3), p.167-178
issn 0342-1791
1432-2021
language eng
recordid cdi_proquest_journals_2262087601
source SpringerLink Journals - AutoHoldings
subjects Bearing
Charge transport
Crystallography and Scattering Methods
Current carriers
Dependence
Earth and Environmental Science
Earth Sciences
Electrical conduction
Electrical resistivity
Geochemistry
Geological history
Iron
Magnesium
Mineral Resources
Mineralogy
Olivine
Original Paper
Polarons
Species diffusion
Upper mantle
Vacancies
title Electrical conductivity of synthetic iron-bearing olivine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20conductivity%20of%20synthetic%20iron-bearing%20olivine&rft.jtitle=Physics%20and%20chemistry%20of%20minerals&rft.au=Farla,%20Robert%20J.%20M.&rft.date=2010-03-01&rft.volume=37&rft.issue=3&rft.spage=167&rft.epage=178&rft.pages=167-178&rft.issn=0342-1791&rft.eissn=1432-2021&rft_id=info:doi/10.1007/s00269-009-0321-3&rft_dat=%3Cproquest_cross%3E2262087601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262087601&rft_id=info:pmid/&rfr_iscdi=true