Heat of formation of petalite, LiAlSi4O10

The enthalpy of formation of petalite, LiAlSi4O10, has been measured using high-temperature solution calorimetry. The measurements were carried out in a Calvet-type twin micro calorimeter at 728 °C. A 2PbO · B2O3 melt was used as a solvent. Tabulated heats of formation of the components and tabulate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics and chemistry of minerals 2001-09, Vol.28 (8), p.531-533
Hauptverfasser: Faßhauer, D W, Cemič, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 533
container_issue 8
container_start_page 531
container_title Physics and chemistry of minerals
container_volume 28
creator Faßhauer, D W
Cemič, L
description The enthalpy of formation of petalite, LiAlSi4O10, has been measured using high-temperature solution calorimetry. The measurements were carried out in a Calvet-type twin micro calorimeter at 728 °C. A 2PbO · B2O3 melt was used as a solvent. Tabulated heats of formation of the components and tabulated heat capacities of the reactants and the product (Robie and Hemingway 1995) were used to calculate the standard heat of formation of petalite from the measured heats of solution. The calculations yielded a mean value of ΔfHpet298.15=−4872±5.4 kJ mol−1. This value may be compared to the heat of formation of ΔfHpet298.15= −4886.5±6.3 kJ mol−1 determined by the HF solution calorimetry by Bennington et al. (1980). Faßhauer et al. (1998) combined thermodynamic data with phase-equilibrium results to obtain best-fit thermodynamic results using the Bayes method, in order to derive an internally consistent dataset for phases in the NaAlSiO4– LiAlSiO4–Al2O3–SiO2–H2O system. They determined −4865.6 ± 0.8 kJ mol−1 as the enthalpy of formation of petalite, a value that is appreciably closer to the enthalpy found in this work.
doi_str_mv 10.1007/s002690100183
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2262083998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262083998</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-e16731692f3112d1a02ce055d2282542e719aed6fc748473b39f1420603a5ad03</originalsourceid><addsrcrecordid>eNotjUtLAzEYRYMoOFaX7gdcCUa_RyaPZSnWCgNdqOsSOwlMGZtxkv5_R3R174HLuULcIjwigHnKAKQdzB0tn4kKFZMkIDwXFbAiicbhpbjK-TBPFJumEveb4EudYh3T9OVLn46_MIbih76Eh7rtl8Nbr7YI1-Ii-iGHm_9ciI_18_tqI9vty-tq2coRLRYZUBtG7SgyInXogfYBmqYjstQoCgadD52Oe6OsMvzJLqIi0MC-8R3wQtz9eccpfZ9CLrtDOk3H-XJHpAksO2f5B4UpP1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262083998</pqid></control><display><type>article</type><title>Heat of formation of petalite, LiAlSi4O10</title><source>SpringerLink Journals - AutoHoldings</source><creator>Faßhauer, D W ; Cemič, L</creator><creatorcontrib>Faßhauer, D W ; Cemič, L</creatorcontrib><description>The enthalpy of formation of petalite, LiAlSi4O10, has been measured using high-temperature solution calorimetry. The measurements were carried out in a Calvet-type twin micro calorimeter at 728 °C. A 2PbO · B2O3 melt was used as a solvent. Tabulated heats of formation of the components and tabulated heat capacities of the reactants and the product (Robie and Hemingway 1995) were used to calculate the standard heat of formation of petalite from the measured heats of solution. The calculations yielded a mean value of ΔfHpet298.15=−4872±5.4 kJ mol−1. This value may be compared to the heat of formation of ΔfHpet298.15= −4886.5±6.3 kJ mol−1 determined by the HF solution calorimetry by Bennington et al. (1980). Faßhauer et al. (1998) combined thermodynamic data with phase-equilibrium results to obtain best-fit thermodynamic results using the Bayes method, in order to derive an internally consistent dataset for phases in the NaAlSiO4– LiAlSiO4–Al2O3–SiO2–H2O system. They determined −4865.6 ± 0.8 kJ mol−1 as the enthalpy of formation of petalite, a value that is appreciably closer to the enthalpy found in this work.</description><identifier>ISSN: 0342-1791</identifier><identifier>EISSN: 1432-2021</identifier><identifier>DOI: 10.1007/s002690100183</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Aluminum oxide ; Bayesian analysis ; Boron oxides ; Calorimetry ; Enthalpy ; Heat measurement ; Heat of formation ; Heat of solution ; Hemingway, Ernest (1899-1961) ; High temperature ; Mathematical analysis ; Silicon dioxide ; Thermodynamic equilibrium</subject><ispartof>Physics and chemistry of minerals, 2001-09, Vol.28 (8), p.531-533</ispartof><rights>Physics and Chemistry of Minerals is a copyright of Springer, (2001). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Faßhauer, D W</creatorcontrib><creatorcontrib>Cemič, L</creatorcontrib><title>Heat of formation of petalite, LiAlSi4O10</title><title>Physics and chemistry of minerals</title><description>The enthalpy of formation of petalite, LiAlSi4O10, has been measured using high-temperature solution calorimetry. The measurements were carried out in a Calvet-type twin micro calorimeter at 728 °C. A 2PbO · B2O3 melt was used as a solvent. Tabulated heats of formation of the components and tabulated heat capacities of the reactants and the product (Robie and Hemingway 1995) were used to calculate the standard heat of formation of petalite from the measured heats of solution. The calculations yielded a mean value of ΔfHpet298.15=−4872±5.4 kJ mol−1. This value may be compared to the heat of formation of ΔfHpet298.15= −4886.5±6.3 kJ mol−1 determined by the HF solution calorimetry by Bennington et al. (1980). Faßhauer et al. (1998) combined thermodynamic data with phase-equilibrium results to obtain best-fit thermodynamic results using the Bayes method, in order to derive an internally consistent dataset for phases in the NaAlSiO4– LiAlSiO4–Al2O3–SiO2–H2O system. They determined −4865.6 ± 0.8 kJ mol−1 as the enthalpy of formation of petalite, a value that is appreciably closer to the enthalpy found in this work.</description><subject>Aluminum oxide</subject><subject>Bayesian analysis</subject><subject>Boron oxides</subject><subject>Calorimetry</subject><subject>Enthalpy</subject><subject>Heat measurement</subject><subject>Heat of formation</subject><subject>Heat of solution</subject><subject>Hemingway, Ernest (1899-1961)</subject><subject>High temperature</subject><subject>Mathematical analysis</subject><subject>Silicon dioxide</subject><subject>Thermodynamic equilibrium</subject><issn>0342-1791</issn><issn>1432-2021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotjUtLAzEYRYMoOFaX7gdcCUa_RyaPZSnWCgNdqOsSOwlMGZtxkv5_R3R174HLuULcIjwigHnKAKQdzB0tn4kKFZMkIDwXFbAiicbhpbjK-TBPFJumEveb4EudYh3T9OVLn46_MIbih76Eh7rtl8Nbr7YI1-Ii-iGHm_9ciI_18_tqI9vty-tq2coRLRYZUBtG7SgyInXogfYBmqYjstQoCgadD52Oe6OsMvzJLqIi0MC-8R3wQtz9eccpfZ9CLrtDOk3H-XJHpAksO2f5B4UpP1s</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Faßhauer, D W</creator><creator>Cemič, L</creator><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20010901</creationdate><title>Heat of formation of petalite, LiAlSi4O10</title><author>Faßhauer, D W ; Cemič, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-e16731692f3112d1a02ce055d2282542e719aed6fc748473b39f1420603a5ad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Aluminum oxide</topic><topic>Bayesian analysis</topic><topic>Boron oxides</topic><topic>Calorimetry</topic><topic>Enthalpy</topic><topic>Heat measurement</topic><topic>Heat of formation</topic><topic>Heat of solution</topic><topic>Hemingway, Ernest (1899-1961)</topic><topic>High temperature</topic><topic>Mathematical analysis</topic><topic>Silicon dioxide</topic><topic>Thermodynamic equilibrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faßhauer, D W</creatorcontrib><creatorcontrib>Cemič, L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Physics and chemistry of minerals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faßhauer, D W</au><au>Cemič, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat of formation of petalite, LiAlSi4O10</atitle><jtitle>Physics and chemistry of minerals</jtitle><date>2001-09-01</date><risdate>2001</risdate><volume>28</volume><issue>8</issue><spage>531</spage><epage>533</epage><pages>531-533</pages><issn>0342-1791</issn><eissn>1432-2021</eissn><abstract>The enthalpy of formation of petalite, LiAlSi4O10, has been measured using high-temperature solution calorimetry. The measurements were carried out in a Calvet-type twin micro calorimeter at 728 °C. A 2PbO · B2O3 melt was used as a solvent. Tabulated heats of formation of the components and tabulated heat capacities of the reactants and the product (Robie and Hemingway 1995) were used to calculate the standard heat of formation of petalite from the measured heats of solution. The calculations yielded a mean value of ΔfHpet298.15=−4872±5.4 kJ mol−1. This value may be compared to the heat of formation of ΔfHpet298.15= −4886.5±6.3 kJ mol−1 determined by the HF solution calorimetry by Bennington et al. (1980). Faßhauer et al. (1998) combined thermodynamic data with phase-equilibrium results to obtain best-fit thermodynamic results using the Bayes method, in order to derive an internally consistent dataset for phases in the NaAlSiO4– LiAlSiO4–Al2O3–SiO2–H2O system. They determined −4865.6 ± 0.8 kJ mol−1 as the enthalpy of formation of petalite, a value that is appreciably closer to the enthalpy found in this work.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s002690100183</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0342-1791
ispartof Physics and chemistry of minerals, 2001-09, Vol.28 (8), p.531-533
issn 0342-1791
1432-2021
language eng
recordid cdi_proquest_journals_2262083998
source SpringerLink Journals - AutoHoldings
subjects Aluminum oxide
Bayesian analysis
Boron oxides
Calorimetry
Enthalpy
Heat measurement
Heat of formation
Heat of solution
Hemingway, Ernest (1899-1961)
High temperature
Mathematical analysis
Silicon dioxide
Thermodynamic equilibrium
title Heat of formation of petalite, LiAlSi4O10
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20of%20formation%20of%20petalite,%20LiAlSi4O10&rft.jtitle=Physics%20and%20chemistry%20of%20minerals&rft.au=Fa%C3%9Fhauer,%20D%20W&rft.date=2001-09-01&rft.volume=28&rft.issue=8&rft.spage=531&rft.epage=533&rft.pages=531-533&rft.issn=0342-1791&rft.eissn=1432-2021&rft_id=info:doi/10.1007/s002690100183&rft_dat=%3Cproquest%3E2262083998%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262083998&rft_id=info:pmid/&rfr_iscdi=true