Small-angle X-ray scattering measurement of the internal microstructure of natural zircon crystals

Zircon crystals change their physical properties significantly over time in response to the radiation damage (metamictization) induced in the lattice by the presence of radionuclides U and Th. Crystalline zircon has extremely low diffusion rates of the radiogenic daughter product, Pb. Lead diffusion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics and chemistry of minerals 2003-11, Vol.30 (10), p.631-640
Hauptverfasser: Radlinski, A. P., Claou -Long, J., Hinde, A. L., Radlinska, E. Z., Lin, J.-S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 640
container_issue 10
container_start_page 631
container_title Physics and chemistry of minerals
container_volume 30
creator Radlinski, A. P.
Claou -Long, J.
Hinde, A. L.
Radlinska, E. Z.
Lin, J.-S.
description Zircon crystals change their physical properties significantly over time in response to the radiation damage (metamictization) induced in the lattice by the presence of radionuclides U and Th. Crystalline zircon has extremely low diffusion rates of the radiogenic daughter product, Pb. Lead diffusion is enhanced in metamict volumes, but the observed lack of correlation between Pb loss and metamictization in natural zircons requires that other mechanisms control the incidence of Pb migration. The proposition that self-induced stress and elasticity contrasts in zoned natural crystals create fast-track Pb migration pathways, in response to time-integrated radiation damage, requires a means of detecting the microstructures within zircons at the interatomic scale at which Pb migration takes place. Small-angle X-ray scattering (SAXS) is introduced as a means of detecting candidate microstructures including subgrain boundaries, defect networks and microfractures produced by differential metamictization. It is shown that a classical X-ray source yields measurable SAXS response from contrasting metamict and crystalline domains within a crystal, and these properties are quantified for a metamict zircon megacryst. Detection of the weaker SAXS response expected from microfractures and networked defects requires the more intense X-rays of synchrotron-source radiation.
doi_str_mv 10.1007/s00269-003-0352-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262083539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262083539</sourcerecordid><originalsourceid>FETCH-LOGICAL-a294t-5200ce76e971e0e82b5777822fb9eaaf3b45d371eeb16139c0837f13852e786a3</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMouK7-AG8Bz9HJpG2aoyx-wYIHFbyFtE7XLv1Yk_RQf70p62XegedlGB7GriXcSgB9FwCwMAJACVA5CjhhK5kpFAgoT9kKVIZCaiPP2UUIe4AEdb5i1Vvvuk64YdcR_xTezTzULkby7bDjPbkweeppiHxsePwm3g6JDa7jfVv7MUQ_1TFVFjy4tCXy2_p6HHjt5xBdFy7ZWZOCrv5zzT4eH943z2L7-vSyud8KhyaLIkeAmnRBRksCKrHKtdYlYlMZcq5RVZZ_qcSokoVUpoZS6UaqMkfSZeHUmt0c7x78-DNRiHY_TsurwSIWmOq5Mqklj63l--CpsQff9s7PVoJdVNqjSptU2kVlGn_Mq2eS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262083539</pqid></control><display><type>article</type><title>Small-angle X-ray scattering measurement of the internal microstructure of natural zircon crystals</title><source>SpringerLink Journals - AutoHoldings</source><creator>Radlinski, A. P. ; Claou -Long, J. ; Hinde, A. L. ; Radlinska, E. Z. ; Lin, J.-S.</creator><creatorcontrib>Radlinski, A. P. ; Claou -Long, J. ; Hinde, A. L. ; Radlinska, E. Z. ; Lin, J.-S.</creatorcontrib><description>Zircon crystals change their physical properties significantly over time in response to the radiation damage (metamictization) induced in the lattice by the presence of radionuclides U and Th. Crystalline zircon has extremely low diffusion rates of the radiogenic daughter product, Pb. Lead diffusion is enhanced in metamict volumes, but the observed lack of correlation between Pb loss and metamictization in natural zircons requires that other mechanisms control the incidence of Pb migration. The proposition that self-induced stress and elasticity contrasts in zoned natural crystals create fast-track Pb migration pathways, in response to time-integrated radiation damage, requires a means of detecting the microstructures within zircons at the interatomic scale at which Pb migration takes place. Small-angle X-ray scattering (SAXS) is introduced as a means of detecting candidate microstructures including subgrain boundaries, defect networks and microfractures produced by differential metamictization. It is shown that a classical X-ray source yields measurable SAXS response from contrasting metamict and crystalline domains within a crystal, and these properties are quantified for a metamict zircon megacryst. Detection of the weaker SAXS response expected from microfractures and networked defects requires the more intense X-rays of synchrotron-source radiation.</description><identifier>ISSN: 0342-1791</identifier><identifier>EISSN: 1432-2021</identifier><identifier>DOI: 10.1007/s00269-003-0352-0</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Crystal defects ; Crystal structure ; Crystallinity ; Crystals ; Diffusion rate ; Domains ; Elasticity ; Grain sub boundaries ; Lead ; Microfracture ; Migration ; Physical properties ; Radiation damage ; Radioisotopes ; Small angle X ray scattering ; Thermal energy ; X ray sources ; X-rays ; Zircon</subject><ispartof>Physics and chemistry of minerals, 2003-11, Vol.30 (10), p.631-640</ispartof><rights>Physics and Chemistry of Minerals is a copyright of Springer, (2003). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a294t-5200ce76e971e0e82b5777822fb9eaaf3b45d371eeb16139c0837f13852e786a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Radlinski, A. P.</creatorcontrib><creatorcontrib>Claou -Long, J.</creatorcontrib><creatorcontrib>Hinde, A. L.</creatorcontrib><creatorcontrib>Radlinska, E. Z.</creatorcontrib><creatorcontrib>Lin, J.-S.</creatorcontrib><title>Small-angle X-ray scattering measurement of the internal microstructure of natural zircon crystals</title><title>Physics and chemistry of minerals</title><description>Zircon crystals change their physical properties significantly over time in response to the radiation damage (metamictization) induced in the lattice by the presence of radionuclides U and Th. Crystalline zircon has extremely low diffusion rates of the radiogenic daughter product, Pb. Lead diffusion is enhanced in metamict volumes, but the observed lack of correlation between Pb loss and metamictization in natural zircons requires that other mechanisms control the incidence of Pb migration. The proposition that self-induced stress and elasticity contrasts in zoned natural crystals create fast-track Pb migration pathways, in response to time-integrated radiation damage, requires a means of detecting the microstructures within zircons at the interatomic scale at which Pb migration takes place. Small-angle X-ray scattering (SAXS) is introduced as a means of detecting candidate microstructures including subgrain boundaries, defect networks and microfractures produced by differential metamictization. It is shown that a classical X-ray source yields measurable SAXS response from contrasting metamict and crystalline domains within a crystal, and these properties are quantified for a metamict zircon megacryst. Detection of the weaker SAXS response expected from microfractures and networked defects requires the more intense X-rays of synchrotron-source radiation.</description><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystals</subject><subject>Diffusion rate</subject><subject>Domains</subject><subject>Elasticity</subject><subject>Grain sub boundaries</subject><subject>Lead</subject><subject>Microfracture</subject><subject>Migration</subject><subject>Physical properties</subject><subject>Radiation damage</subject><subject>Radioisotopes</subject><subject>Small angle X ray scattering</subject><subject>Thermal energy</subject><subject>X ray sources</subject><subject>X-rays</subject><subject>Zircon</subject><issn>0342-1791</issn><issn>1432-2021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkE1LxDAQhoMouK7-AG8Bz9HJpG2aoyx-wYIHFbyFtE7XLv1Yk_RQf70p62XegedlGB7GriXcSgB9FwCwMAJACVA5CjhhK5kpFAgoT9kKVIZCaiPP2UUIe4AEdb5i1Vvvuk64YdcR_xTezTzULkby7bDjPbkweeppiHxsePwm3g6JDa7jfVv7MUQ_1TFVFjy4tCXy2_p6HHjt5xBdFy7ZWZOCrv5zzT4eH943z2L7-vSyud8KhyaLIkeAmnRBRksCKrHKtdYlYlMZcq5RVZZ_qcSokoVUpoZS6UaqMkfSZeHUmt0c7x78-DNRiHY_TsurwSIWmOq5Mqklj63l--CpsQff9s7PVoJdVNqjSptU2kVlGn_Mq2eS</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Radlinski, A. P.</creator><creator>Claou -Long, J.</creator><creator>Hinde, A. L.</creator><creator>Radlinska, E. Z.</creator><creator>Lin, J.-S.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>200311</creationdate><title>Small-angle X-ray scattering measurement of the internal microstructure of natural zircon crystals</title><author>Radlinski, A. P. ; Claou -Long, J. ; Hinde, A. L. ; Radlinska, E. Z. ; Lin, J.-S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a294t-5200ce76e971e0e82b5777822fb9eaaf3b45d371eeb16139c0837f13852e786a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystals</topic><topic>Diffusion rate</topic><topic>Domains</topic><topic>Elasticity</topic><topic>Grain sub boundaries</topic><topic>Lead</topic><topic>Microfracture</topic><topic>Migration</topic><topic>Physical properties</topic><topic>Radiation damage</topic><topic>Radioisotopes</topic><topic>Small angle X ray scattering</topic><topic>Thermal energy</topic><topic>X ray sources</topic><topic>X-rays</topic><topic>Zircon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radlinski, A. P.</creatorcontrib><creatorcontrib>Claou -Long, J.</creatorcontrib><creatorcontrib>Hinde, A. L.</creatorcontrib><creatorcontrib>Radlinska, E. Z.</creatorcontrib><creatorcontrib>Lin, J.-S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Physics and chemistry of minerals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radlinski, A. P.</au><au>Claou -Long, J.</au><au>Hinde, A. L.</au><au>Radlinska, E. Z.</au><au>Lin, J.-S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small-angle X-ray scattering measurement of the internal microstructure of natural zircon crystals</atitle><jtitle>Physics and chemistry of minerals</jtitle><date>2003-11</date><risdate>2003</risdate><volume>30</volume><issue>10</issue><spage>631</spage><epage>640</epage><pages>631-640</pages><issn>0342-1791</issn><eissn>1432-2021</eissn><abstract>Zircon crystals change their physical properties significantly over time in response to the radiation damage (metamictization) induced in the lattice by the presence of radionuclides U and Th. Crystalline zircon has extremely low diffusion rates of the radiogenic daughter product, Pb. Lead diffusion is enhanced in metamict volumes, but the observed lack of correlation between Pb loss and metamictization in natural zircons requires that other mechanisms control the incidence of Pb migration. The proposition that self-induced stress and elasticity contrasts in zoned natural crystals create fast-track Pb migration pathways, in response to time-integrated radiation damage, requires a means of detecting the microstructures within zircons at the interatomic scale at which Pb migration takes place. Small-angle X-ray scattering (SAXS) is introduced as a means of detecting candidate microstructures including subgrain boundaries, defect networks and microfractures produced by differential metamictization. It is shown that a classical X-ray source yields measurable SAXS response from contrasting metamict and crystalline domains within a crystal, and these properties are quantified for a metamict zircon megacryst. Detection of the weaker SAXS response expected from microfractures and networked defects requires the more intense X-rays of synchrotron-source radiation.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00269-003-0352-0</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0342-1791
ispartof Physics and chemistry of minerals, 2003-11, Vol.30 (10), p.631-640
issn 0342-1791
1432-2021
language eng
recordid cdi_proquest_journals_2262083539
source SpringerLink Journals - AutoHoldings
subjects Crystal defects
Crystal structure
Crystallinity
Crystals
Diffusion rate
Domains
Elasticity
Grain sub boundaries
Lead
Microfracture
Migration
Physical properties
Radiation damage
Radioisotopes
Small angle X ray scattering
Thermal energy
X ray sources
X-rays
Zircon
title Small-angle X-ray scattering measurement of the internal microstructure of natural zircon crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A21%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small-angle%20X-ray%20scattering%20measurement%20of%20the%20internal%20microstructure%20of%20natural%20zircon%20crystals&rft.jtitle=Physics%20and%20chemistry%20of%20minerals&rft.au=Radlinski,%20A.%20P.&rft.date=2003-11&rft.volume=30&rft.issue=10&rft.spage=631&rft.epage=640&rft.pages=631-640&rft.issn=0342-1791&rft.eissn=1432-2021&rft_id=info:doi/10.1007/s00269-003-0352-0&rft_dat=%3Cproquest_cross%3E2262083539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262083539&rft_id=info:pmid/&rfr_iscdi=true