A new oxygen-deficient perovskite phase Ca(Fe0.4Si0.6)O2.8 and phase relations along the join CaSiO3–CaFeO2.5 at transition zone conditions

A new oxygen-deficient perovskite with the composition Ca(Fe0.4Si0.6)O2.8 has been synthesised at high-pressure and -temperature conditions relevant to the Earth’s transition zone using a multianvil apparatus. In contrast to pure CaSiO3 perovskite, this new phase is quenchable under ambient conditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics and chemistry of minerals 2004-02, Vol.31 (1), p.52-65
Hauptverfasser: Bläß, U W, Langenhorst, F, Boffa-Ballaran, T, Seifert, F, Frost, D J, McCammon, C A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue 1
container_start_page 52
container_title Physics and chemistry of minerals
container_volume 31
creator Bläß, U W
Langenhorst, F
Boffa-Ballaran, T
Seifert, F
Frost, D J
McCammon, C A
description A new oxygen-deficient perovskite with the composition Ca(Fe0.4Si0.6)O2.8 has been synthesised at high-pressure and -temperature conditions relevant to the Earth’s transition zone using a multianvil apparatus. In contrast to pure CaSiO3 perovskite, this new phase is quenchable under ambient conditions. The diffraction pattern revealed strong intensities for pseudocubic reflections, but the true lattice is C-centred monoclinic with a=9.2486 Å, b=5.2596 Å, c=21.890 Å and β=97.94°. This lattice is only slightly distorted from rhombohedral symmetry. Electron-diffraction and high-resolution TEM images show that a well-ordered ten-layer superstructure is developed along the monoclinic c* direction, which corresponds to the pseudocubic [111] direction. This unique type of superstructure likely consists of an oxygen-deficient double layer with tetrahedrally coordinated silicon, alternating with eight octahedral layers of perovskite structure, which are one half each occupied by silicon and iron as indicated by Mössbauer and Si K electron energy loss spectroscopy. The maximum iron solubility in CaSiO3 perovskite is determined at 16 GPa to be 4 at% on the silicon site and it increases significantly above 20 GPa. The phase relations have been analysed along the join CaSiO3–CaFeO2.5, which revealed that no further defect perovskites are stable. An analogous phase exists in the aluminous system, with Ca(Al0.4Si0.6)O2.8 stoichiometry and diffraction patterns similar to that of Ca(Fe0.4Si0.6)O2.8. In addition, we discovered another defect perovskite with Ca(Al0.5Si0.5)O2.75 stoichiometry and an eight-layer superstructure most likely consisting of a tetrahedral double layer alternating with six octahedral layers. The potential occurrence of all three defect perovskites in the Earth’s interior is discussed.
doi_str_mv 10.1007/s00269-003-0375-6
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2262080370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262080370</sourcerecordid><originalsourceid>FETCH-proquest_journals_22620803703</originalsourceid><addsrcrecordid>eNqNjztOw0AURUcIJMxnAXRPooFizJsZf5ISWVh0KUIfjeKXZIz1xngmfFKxASp2yEpwUBZAdXV1zi2uEFcKU4VY3gVEXUwlopFoylwWRyJRmdFSo1bHIkGTaanKqToVZyG0iCMs80R83QPTG_j3jzWxbGjllo44Qk-Dfw3PLhL0GxsIKntTE6bZ3GFa3M50OgHLzQEO1NnoPAewnec1xA1B6x2Pq7mbmZ_P78rWNI5ysBHiYDm4vQ87zwRLz81fDRfiZGW7QJeHPBfX9cNT9Sj7wb9sKcRF67cDj2ihdaFxMn5F8z_rFyLeWag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262080370</pqid></control><display><type>article</type><title>A new oxygen-deficient perovskite phase Ca(Fe0.4Si0.6)O2.8 and phase relations along the join CaSiO3–CaFeO2.5 at transition zone conditions</title><source>Springer Nature - Complete Springer Journals</source><creator>Bläß, U W ; Langenhorst, F ; Boffa-Ballaran, T ; Seifert, F ; Frost, D J ; McCammon, C A</creator><creatorcontrib>Bläß, U W ; Langenhorst, F ; Boffa-Ballaran, T ; Seifert, F ; Frost, D J ; McCammon, C A</creatorcontrib><description>A new oxygen-deficient perovskite with the composition Ca(Fe0.4Si0.6)O2.8 has been synthesised at high-pressure and -temperature conditions relevant to the Earth’s transition zone using a multianvil apparatus. In contrast to pure CaSiO3 perovskite, this new phase is quenchable under ambient conditions. The diffraction pattern revealed strong intensities for pseudocubic reflections, but the true lattice is C-centred monoclinic with a=9.2486 Å, b=5.2596 Å, c=21.890 Å and β=97.94°. This lattice is only slightly distorted from rhombohedral symmetry. Electron-diffraction and high-resolution TEM images show that a well-ordered ten-layer superstructure is developed along the monoclinic c* direction, which corresponds to the pseudocubic [111] direction. This unique type of superstructure likely consists of an oxygen-deficient double layer with tetrahedrally coordinated silicon, alternating with eight octahedral layers of perovskite structure, which are one half each occupied by silicon and iron as indicated by Mössbauer and Si K electron energy loss spectroscopy. The maximum iron solubility in CaSiO3 perovskite is determined at 16 GPa to be 4 at% on the silicon site and it increases significantly above 20 GPa. The phase relations have been analysed along the join CaSiO3–CaFeO2.5, which revealed that no further defect perovskites are stable. An analogous phase exists in the aluminous system, with Ca(Al0.4Si0.6)O2.8 stoichiometry and diffraction patterns similar to that of Ca(Fe0.4Si0.6)O2.8. In addition, we discovered another defect perovskite with Ca(Al0.5Si0.5)O2.75 stoichiometry and an eight-layer superstructure most likely consisting of a tetrahedral double layer alternating with six octahedral layers. The potential occurrence of all three defect perovskites in the Earth’s interior is discussed.</description><identifier>ISSN: 0342-1791</identifier><identifier>EISSN: 1432-2021</identifier><identifier>DOI: 10.1007/s00269-003-0375-6</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Calcium ; Defects ; Diffraction patterns ; Electron energy loss spectroscopy ; Energy dissipation ; Energy loss ; Image resolution ; Iron ; Oxygen ; Perovskite structure ; Perovskites ; Silicon ; Stoichiometry ; Superstructures ; Transition zone</subject><ispartof>Physics and chemistry of minerals, 2004-02, Vol.31 (1), p.52-65</ispartof><rights>Physics and Chemistry of Minerals is a copyright of Springer, (2004). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bläß, U W</creatorcontrib><creatorcontrib>Langenhorst, F</creatorcontrib><creatorcontrib>Boffa-Ballaran, T</creatorcontrib><creatorcontrib>Seifert, F</creatorcontrib><creatorcontrib>Frost, D J</creatorcontrib><creatorcontrib>McCammon, C A</creatorcontrib><title>A new oxygen-deficient perovskite phase Ca(Fe0.4Si0.6)O2.8 and phase relations along the join CaSiO3–CaFeO2.5 at transition zone conditions</title><title>Physics and chemistry of minerals</title><description>A new oxygen-deficient perovskite with the composition Ca(Fe0.4Si0.6)O2.8 has been synthesised at high-pressure and -temperature conditions relevant to the Earth’s transition zone using a multianvil apparatus. In contrast to pure CaSiO3 perovskite, this new phase is quenchable under ambient conditions. The diffraction pattern revealed strong intensities for pseudocubic reflections, but the true lattice is C-centred monoclinic with a=9.2486 Å, b=5.2596 Å, c=21.890 Å and β=97.94°. This lattice is only slightly distorted from rhombohedral symmetry. Electron-diffraction and high-resolution TEM images show that a well-ordered ten-layer superstructure is developed along the monoclinic c* direction, which corresponds to the pseudocubic [111] direction. This unique type of superstructure likely consists of an oxygen-deficient double layer with tetrahedrally coordinated silicon, alternating with eight octahedral layers of perovskite structure, which are one half each occupied by silicon and iron as indicated by Mössbauer and Si K electron energy loss spectroscopy. The maximum iron solubility in CaSiO3 perovskite is determined at 16 GPa to be 4 at% on the silicon site and it increases significantly above 20 GPa. The phase relations have been analysed along the join CaSiO3–CaFeO2.5, which revealed that no further defect perovskites are stable. An analogous phase exists in the aluminous system, with Ca(Al0.4Si0.6)O2.8 stoichiometry and diffraction patterns similar to that of Ca(Fe0.4Si0.6)O2.8. In addition, we discovered another defect perovskite with Ca(Al0.5Si0.5)O2.75 stoichiometry and an eight-layer superstructure most likely consisting of a tetrahedral double layer alternating with six octahedral layers. The potential occurrence of all three defect perovskites in the Earth’s interior is discussed.</description><subject>Calcium</subject><subject>Defects</subject><subject>Diffraction patterns</subject><subject>Electron energy loss spectroscopy</subject><subject>Energy dissipation</subject><subject>Energy loss</subject><subject>Image resolution</subject><subject>Iron</subject><subject>Oxygen</subject><subject>Perovskite structure</subject><subject>Perovskites</subject><subject>Silicon</subject><subject>Stoichiometry</subject><subject>Superstructures</subject><subject>Transition zone</subject><issn>0342-1791</issn><issn>1432-2021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjztOw0AURUcIJMxnAXRPooFizJsZf5ISWVh0KUIfjeKXZIz1xngmfFKxASp2yEpwUBZAdXV1zi2uEFcKU4VY3gVEXUwlopFoylwWRyJRmdFSo1bHIkGTaanKqToVZyG0iCMs80R83QPTG_j3jzWxbGjllo44Qk-Dfw3PLhL0GxsIKntTE6bZ3GFa3M50OgHLzQEO1NnoPAewnec1xA1B6x2Pq7mbmZ_P78rWNI5ysBHiYDm4vQ87zwRLz81fDRfiZGW7QJeHPBfX9cNT9Sj7wb9sKcRF67cDj2ihdaFxMn5F8z_rFyLeWag</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Bläß, U W</creator><creator>Langenhorst, F</creator><creator>Boffa-Ballaran, T</creator><creator>Seifert, F</creator><creator>Frost, D J</creator><creator>McCammon, C A</creator><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20040201</creationdate><title>A new oxygen-deficient perovskite phase Ca(Fe0.4Si0.6)O2.8 and phase relations along the join CaSiO3–CaFeO2.5 at transition zone conditions</title><author>Bläß, U W ; Langenhorst, F ; Boffa-Ballaran, T ; Seifert, F ; Frost, D J ; McCammon, C A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22620803703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Calcium</topic><topic>Defects</topic><topic>Diffraction patterns</topic><topic>Electron energy loss spectroscopy</topic><topic>Energy dissipation</topic><topic>Energy loss</topic><topic>Image resolution</topic><topic>Iron</topic><topic>Oxygen</topic><topic>Perovskite structure</topic><topic>Perovskites</topic><topic>Silicon</topic><topic>Stoichiometry</topic><topic>Superstructures</topic><topic>Transition zone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bläß, U W</creatorcontrib><creatorcontrib>Langenhorst, F</creatorcontrib><creatorcontrib>Boffa-Ballaran, T</creatorcontrib><creatorcontrib>Seifert, F</creatorcontrib><creatorcontrib>Frost, D J</creatorcontrib><creatorcontrib>McCammon, C A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Physics and chemistry of minerals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bläß, U W</au><au>Langenhorst, F</au><au>Boffa-Ballaran, T</au><au>Seifert, F</au><au>Frost, D J</au><au>McCammon, C A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new oxygen-deficient perovskite phase Ca(Fe0.4Si0.6)O2.8 and phase relations along the join CaSiO3–CaFeO2.5 at transition zone conditions</atitle><jtitle>Physics and chemistry of minerals</jtitle><date>2004-02-01</date><risdate>2004</risdate><volume>31</volume><issue>1</issue><spage>52</spage><epage>65</epage><pages>52-65</pages><issn>0342-1791</issn><eissn>1432-2021</eissn><abstract>A new oxygen-deficient perovskite with the composition Ca(Fe0.4Si0.6)O2.8 has been synthesised at high-pressure and -temperature conditions relevant to the Earth’s transition zone using a multianvil apparatus. In contrast to pure CaSiO3 perovskite, this new phase is quenchable under ambient conditions. The diffraction pattern revealed strong intensities for pseudocubic reflections, but the true lattice is C-centred monoclinic with a=9.2486 Å, b=5.2596 Å, c=21.890 Å and β=97.94°. This lattice is only slightly distorted from rhombohedral symmetry. Electron-diffraction and high-resolution TEM images show that a well-ordered ten-layer superstructure is developed along the monoclinic c* direction, which corresponds to the pseudocubic [111] direction. This unique type of superstructure likely consists of an oxygen-deficient double layer with tetrahedrally coordinated silicon, alternating with eight octahedral layers of perovskite structure, which are one half each occupied by silicon and iron as indicated by Mössbauer and Si K electron energy loss spectroscopy. The maximum iron solubility in CaSiO3 perovskite is determined at 16 GPa to be 4 at% on the silicon site and it increases significantly above 20 GPa. The phase relations have been analysed along the join CaSiO3–CaFeO2.5, which revealed that no further defect perovskites are stable. An analogous phase exists in the aluminous system, with Ca(Al0.4Si0.6)O2.8 stoichiometry and diffraction patterns similar to that of Ca(Fe0.4Si0.6)O2.8. In addition, we discovered another defect perovskite with Ca(Al0.5Si0.5)O2.75 stoichiometry and an eight-layer superstructure most likely consisting of a tetrahedral double layer alternating with six octahedral layers. The potential occurrence of all three defect perovskites in the Earth’s interior is discussed.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00269-003-0375-6</doi></addata></record>
fulltext fulltext
identifier ISSN: 0342-1791
ispartof Physics and chemistry of minerals, 2004-02, Vol.31 (1), p.52-65
issn 0342-1791
1432-2021
language eng
recordid cdi_proquest_journals_2262080370
source Springer Nature - Complete Springer Journals
subjects Calcium
Defects
Diffraction patterns
Electron energy loss spectroscopy
Energy dissipation
Energy loss
Image resolution
Iron
Oxygen
Perovskite structure
Perovskites
Silicon
Stoichiometry
Superstructures
Transition zone
title A new oxygen-deficient perovskite phase Ca(Fe0.4Si0.6)O2.8 and phase relations along the join CaSiO3–CaFeO2.5 at transition zone conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20oxygen-deficient%20perovskite%20phase%20Ca(Fe0.4Si0.6)O2.8%20and%20phase%20relations%20along%20the%20join%20CaSiO3%E2%80%93CaFeO2.5%20at%20transition%20zone%20conditions&rft.jtitle=Physics%20and%20chemistry%20of%20minerals&rft.au=Bl%C3%A4%C3%9F,%20U%20W&rft.date=2004-02-01&rft.volume=31&rft.issue=1&rft.spage=52&rft.epage=65&rft.pages=52-65&rft.issn=0342-1791&rft.eissn=1432-2021&rft_id=info:doi/10.1007/s00269-003-0375-6&rft_dat=%3Cproquest%3E2262080370%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262080370&rft_id=info:pmid/&rfr_iscdi=true