Observations on the crystal structures of lueshite
Laboratory powder XRD patterns of the perovskite-group mineral lueshite from the type locality (Lueshe, Kivu, DRC) and pure NaNbO 3 demonstrate that lueshite does not adopt the same space group ( Pbma; #57 ) as the synthetic compound. The crystal structures of lueshite (2 samples) from Lueshe, Mont...
Gespeichert in:
Veröffentlicht in: | Physics and chemistry of minerals 2014-06, Vol.41 (6), p.393-401 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 401 |
---|---|
container_issue | 6 |
container_start_page | 393 |
container_title | Physics and chemistry of minerals |
container_volume | 41 |
creator | Mitchell, Roger H. Burns, Peter C. Knight, Kevin S. Howard, Christopher J. Chakhmouradian, Anton R. |
description | Laboratory powder XRD patterns of the perovskite-group mineral lueshite from the type locality (Lueshe, Kivu, DRC) and pure NaNbO
3
demonstrate that lueshite does not adopt the same space group (
Pbma; #57
) as the synthetic compound. The crystal structures of lueshite (2 samples) from Lueshe, Mont Saint-Hilaire (Quebec, Canada) and Sallanlatvi (Kola, Russia) have been determined by single-crystal CCD X-ray diffraction. These room temperature X-ray data for all single-crystal samples can be satisfactorily refined in the orthorhombic space group
Pbnm
(#62). Cell dimensions, atomic coordinates of the atoms, bond lengths and octahedron tilt angles are given for four crystals. Conventional neutron diffraction patterns for Lueshe lueshite recorded over the temperature range 11–1,000 K confirm that lueshite does not adopt space group
Pbma
within these temperatures. Neutron diffraction indicates no phase changes on cooling from room temperature to 11 K. None of these neutron diffraction data give satisfactorily refinements but suggest that this is the space group
Pbnm
. Time-of-flight neutron diffraction patterns for Lueshe lueshite recorded from room temperature to 700 °C demonstrate phase transitions above 550 °C from
Cmcm
through
P
4
/mbm
to
P
m
3
¯
m
above 650 °C. Cell dimensions and atomic coordinates of the atoms are given for the three high-temperature phases. The room temperature to 400 °C structures cannot be satisfactorily resolved, and it is suggested that the lueshite at room temperature consists of domains of pinned metastable phases with orthorhombic and/or monoclinic structures. However, the sequence of high-temperature phase transitions observed is similar to those determined for synthetic NaTaO
3
, suggesting that the equilibrated room temperature structure of lueshite is orthorhombic
Pbnm
. |
doi_str_mv | 10.1007/s00269-014-0657-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262078193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262078193</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-4bd0a505417d09cc09a426632adde4af9e8068c821f3bad5e02a2323fa6d4d03</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuC5-jMJJvdHKWoFQq99B6ym6xtqbs1yQr996as4MnTHN733mMeY_cIjwhQPUUAUpoDSg6qrDhesBlKQZyA8JLNQEjiWGm8Zjcx7iGDoipnjNZN9OHbpt3Qx2Loi7T1RRtOMdlDEVMY2zQGn5WuOIw-bnfJ37Krzh6iv_u9c7Z5fdkslny1fntfPK-4FUInLhsHtoRSYuVAty1oK0kpQdY5L22nfQ2qbmvCTjTWlR7IkiDRWeWkAzFnD1PsMQxfuTqZ_TCGPjcaIkVQ1ahFpnCi2jDEGHxnjmH3acPJIJjzMmZaxuSHzXkZg9lDkydmtv_w4S_5f9MP9p5lcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262078193</pqid></control><display><type>article</type><title>Observations on the crystal structures of lueshite</title><source>SpringerNature Journals</source><creator>Mitchell, Roger H. ; Burns, Peter C. ; Knight, Kevin S. ; Howard, Christopher J. ; Chakhmouradian, Anton R.</creator><creatorcontrib>Mitchell, Roger H. ; Burns, Peter C. ; Knight, Kevin S. ; Howard, Christopher J. ; Chakhmouradian, Anton R.</creatorcontrib><description>Laboratory powder XRD patterns of the perovskite-group mineral lueshite from the type locality (Lueshe, Kivu, DRC) and pure NaNbO
3
demonstrate that lueshite does not adopt the same space group (
Pbma; #57
) as the synthetic compound. The crystal structures of lueshite (2 samples) from Lueshe, Mont Saint-Hilaire (Quebec, Canada) and Sallanlatvi (Kola, Russia) have been determined by single-crystal CCD X-ray diffraction. These room temperature X-ray data for all single-crystal samples can be satisfactorily refined in the orthorhombic space group
Pbnm
(#62). Cell dimensions, atomic coordinates of the atoms, bond lengths and octahedron tilt angles are given for four crystals. Conventional neutron diffraction patterns for Lueshe lueshite recorded over the temperature range 11–1,000 K confirm that lueshite does not adopt space group
Pbma
within these temperatures. Neutron diffraction indicates no phase changes on cooling from room temperature to 11 K. None of these neutron diffraction data give satisfactorily refinements but suggest that this is the space group
Pbnm
. Time-of-flight neutron diffraction patterns for Lueshe lueshite recorded from room temperature to 700 °C demonstrate phase transitions above 550 °C from
Cmcm
through
P
4
/mbm
to
P
m
3
¯
m
above 650 °C. Cell dimensions and atomic coordinates of the atoms are given for the three high-temperature phases. The room temperature to 400 °C structures cannot be satisfactorily resolved, and it is suggested that the lueshite at room temperature consists of domains of pinned metastable phases with orthorhombic and/or monoclinic structures. However, the sequence of high-temperature phase transitions observed is similar to those determined for synthetic NaTaO
3
, suggesting that the equilibrated room temperature structure of lueshite is orthorhombic
Pbnm
.</description><identifier>ISSN: 0342-1791</identifier><identifier>EISSN: 1432-2021</identifier><identifier>DOI: 10.1007/s00269-014-0657-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chemical bonds ; Crystal structure ; Crystallography and Scattering Methods ; Crystals ; Diffraction patterns ; Domains ; Earth and Environmental Science ; Earth Sciences ; Geochemistry ; High temperature ; Metastable phases ; Mineral Resources ; Mineralogy ; Neutron diffraction ; Neutrons ; Original Paper ; Perovskites ; Phase transitions ; Single crystals ; Temperature ; X-ray diffraction</subject><ispartof>Physics and chemistry of minerals, 2014-06, Vol.41 (6), p.393-401</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Physics and Chemistry of Minerals is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-4bd0a505417d09cc09a426632adde4af9e8068c821f3bad5e02a2323fa6d4d03</citedby><cites>FETCH-LOGICAL-a339t-4bd0a505417d09cc09a426632adde4af9e8068c821f3bad5e02a2323fa6d4d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00269-014-0657-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00269-014-0657-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mitchell, Roger H.</creatorcontrib><creatorcontrib>Burns, Peter C.</creatorcontrib><creatorcontrib>Knight, Kevin S.</creatorcontrib><creatorcontrib>Howard, Christopher J.</creatorcontrib><creatorcontrib>Chakhmouradian, Anton R.</creatorcontrib><title>Observations on the crystal structures of lueshite</title><title>Physics and chemistry of minerals</title><addtitle>Phys Chem Minerals</addtitle><description>Laboratory powder XRD patterns of the perovskite-group mineral lueshite from the type locality (Lueshe, Kivu, DRC) and pure NaNbO
3
demonstrate that lueshite does not adopt the same space group (
Pbma; #57
) as the synthetic compound. The crystal structures of lueshite (2 samples) from Lueshe, Mont Saint-Hilaire (Quebec, Canada) and Sallanlatvi (Kola, Russia) have been determined by single-crystal CCD X-ray diffraction. These room temperature X-ray data for all single-crystal samples can be satisfactorily refined in the orthorhombic space group
Pbnm
(#62). Cell dimensions, atomic coordinates of the atoms, bond lengths and octahedron tilt angles are given for four crystals. Conventional neutron diffraction patterns for Lueshe lueshite recorded over the temperature range 11–1,000 K confirm that lueshite does not adopt space group
Pbma
within these temperatures. Neutron diffraction indicates no phase changes on cooling from room temperature to 11 K. None of these neutron diffraction data give satisfactorily refinements but suggest that this is the space group
Pbnm
. Time-of-flight neutron diffraction patterns for Lueshe lueshite recorded from room temperature to 700 °C demonstrate phase transitions above 550 °C from
Cmcm
through
P
4
/mbm
to
P
m
3
¯
m
above 650 °C. Cell dimensions and atomic coordinates of the atoms are given for the three high-temperature phases. The room temperature to 400 °C structures cannot be satisfactorily resolved, and it is suggested that the lueshite at room temperature consists of domains of pinned metastable phases with orthorhombic and/or monoclinic structures. However, the sequence of high-temperature phase transitions observed is similar to those determined for synthetic NaTaO
3
, suggesting that the equilibrated room temperature structure of lueshite is orthorhombic
Pbnm
.</description><subject>Chemical bonds</subject><subject>Crystal structure</subject><subject>Crystallography and Scattering Methods</subject><subject>Crystals</subject><subject>Diffraction patterns</subject><subject>Domains</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geochemistry</subject><subject>High temperature</subject><subject>Metastable phases</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Neutron diffraction</subject><subject>Neutrons</subject><subject>Original Paper</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Single crystals</subject><subject>Temperature</subject><subject>X-ray diffraction</subject><issn>0342-1791</issn><issn>1432-2021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wNuC5-jMJJvdHKWoFQq99B6ym6xtqbs1yQr996as4MnTHN733mMeY_cIjwhQPUUAUpoDSg6qrDhesBlKQZyA8JLNQEjiWGm8Zjcx7iGDoipnjNZN9OHbpt3Qx2Loi7T1RRtOMdlDEVMY2zQGn5WuOIw-bnfJ37Krzh6iv_u9c7Z5fdkslny1fntfPK-4FUInLhsHtoRSYuVAty1oK0kpQdY5L22nfQ2qbmvCTjTWlR7IkiDRWeWkAzFnD1PsMQxfuTqZ_TCGPjcaIkVQ1ahFpnCi2jDEGHxnjmH3acPJIJjzMmZaxuSHzXkZg9lDkydmtv_w4S_5f9MP9p5lcQ</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Mitchell, Roger H.</creator><creator>Burns, Peter C.</creator><creator>Knight, Kevin S.</creator><creator>Howard, Christopher J.</creator><creator>Chakhmouradian, Anton R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20140601</creationdate><title>Observations on the crystal structures of lueshite</title><author>Mitchell, Roger H. ; Burns, Peter C. ; Knight, Kevin S. ; Howard, Christopher J. ; Chakhmouradian, Anton R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-4bd0a505417d09cc09a426632adde4af9e8068c821f3bad5e02a2323fa6d4d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemical bonds</topic><topic>Crystal structure</topic><topic>Crystallography and Scattering Methods</topic><topic>Crystals</topic><topic>Diffraction patterns</topic><topic>Domains</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geochemistry</topic><topic>High temperature</topic><topic>Metastable phases</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Neutron diffraction</topic><topic>Neutrons</topic><topic>Original Paper</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Single crystals</topic><topic>Temperature</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitchell, Roger H.</creatorcontrib><creatorcontrib>Burns, Peter C.</creatorcontrib><creatorcontrib>Knight, Kevin S.</creatorcontrib><creatorcontrib>Howard, Christopher J.</creatorcontrib><creatorcontrib>Chakhmouradian, Anton R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Physics and chemistry of minerals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitchell, Roger H.</au><au>Burns, Peter C.</au><au>Knight, Kevin S.</au><au>Howard, Christopher J.</au><au>Chakhmouradian, Anton R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observations on the crystal structures of lueshite</atitle><jtitle>Physics and chemistry of minerals</jtitle><stitle>Phys Chem Minerals</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>41</volume><issue>6</issue><spage>393</spage><epage>401</epage><pages>393-401</pages><issn>0342-1791</issn><eissn>1432-2021</eissn><abstract>Laboratory powder XRD patterns of the perovskite-group mineral lueshite from the type locality (Lueshe, Kivu, DRC) and pure NaNbO
3
demonstrate that lueshite does not adopt the same space group (
Pbma; #57
) as the synthetic compound. The crystal structures of lueshite (2 samples) from Lueshe, Mont Saint-Hilaire (Quebec, Canada) and Sallanlatvi (Kola, Russia) have been determined by single-crystal CCD X-ray diffraction. These room temperature X-ray data for all single-crystal samples can be satisfactorily refined in the orthorhombic space group
Pbnm
(#62). Cell dimensions, atomic coordinates of the atoms, bond lengths and octahedron tilt angles are given for four crystals. Conventional neutron diffraction patterns for Lueshe lueshite recorded over the temperature range 11–1,000 K confirm that lueshite does not adopt space group
Pbma
within these temperatures. Neutron diffraction indicates no phase changes on cooling from room temperature to 11 K. None of these neutron diffraction data give satisfactorily refinements but suggest that this is the space group
Pbnm
. Time-of-flight neutron diffraction patterns for Lueshe lueshite recorded from room temperature to 700 °C demonstrate phase transitions above 550 °C from
Cmcm
through
P
4
/mbm
to
P
m
3
¯
m
above 650 °C. Cell dimensions and atomic coordinates of the atoms are given for the three high-temperature phases. The room temperature to 400 °C structures cannot be satisfactorily resolved, and it is suggested that the lueshite at room temperature consists of domains of pinned metastable phases with orthorhombic and/or monoclinic structures. However, the sequence of high-temperature phase transitions observed is similar to those determined for synthetic NaTaO
3
, suggesting that the equilibrated room temperature structure of lueshite is orthorhombic
Pbnm
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00269-014-0657-1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0342-1791 |
ispartof | Physics and chemistry of minerals, 2014-06, Vol.41 (6), p.393-401 |
issn | 0342-1791 1432-2021 |
language | eng |
recordid | cdi_proquest_journals_2262078193 |
source | SpringerNature Journals |
subjects | Chemical bonds Crystal structure Crystallography and Scattering Methods Crystals Diffraction patterns Domains Earth and Environmental Science Earth Sciences Geochemistry High temperature Metastable phases Mineral Resources Mineralogy Neutron diffraction Neutrons Original Paper Perovskites Phase transitions Single crystals Temperature X-ray diffraction |
title | Observations on the crystal structures of lueshite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observations%20on%20the%20crystal%20structures%20of%20lueshite&rft.jtitle=Physics%20and%20chemistry%20of%20minerals&rft.au=Mitchell,%20Roger%20H.&rft.date=2014-06-01&rft.volume=41&rft.issue=6&rft.spage=393&rft.epage=401&rft.pages=393-401&rft.issn=0342-1791&rft.eissn=1432-2021&rft_id=info:doi/10.1007/s00269-014-0657-1&rft_dat=%3Cproquest_cross%3E2262078193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262078193&rft_id=info:pmid/&rfr_iscdi=true |