Observations on the crystal structures of lueshite

Laboratory powder XRD patterns of the perovskite-group mineral lueshite from the type locality (Lueshe, Kivu, DRC) and pure NaNbO 3 demonstrate that lueshite does not adopt the same space group ( Pbma; #57 ) as the synthetic compound. The crystal structures of lueshite (2 samples) from Lueshe, Mont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics and chemistry of minerals 2014-06, Vol.41 (6), p.393-401
Hauptverfasser: Mitchell, Roger H., Burns, Peter C., Knight, Kevin S., Howard, Christopher J., Chakhmouradian, Anton R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 401
container_issue 6
container_start_page 393
container_title Physics and chemistry of minerals
container_volume 41
creator Mitchell, Roger H.
Burns, Peter C.
Knight, Kevin S.
Howard, Christopher J.
Chakhmouradian, Anton R.
description Laboratory powder XRD patterns of the perovskite-group mineral lueshite from the type locality (Lueshe, Kivu, DRC) and pure NaNbO 3 demonstrate that lueshite does not adopt the same space group ( Pbma; #57 ) as the synthetic compound. The crystal structures of lueshite (2 samples) from Lueshe, Mont Saint-Hilaire (Quebec, Canada) and Sallanlatvi (Kola, Russia) have been determined by single-crystal CCD X-ray diffraction. These room temperature X-ray data for all single-crystal samples can be satisfactorily refined in the orthorhombic space group Pbnm (#62). Cell dimensions, atomic coordinates of the atoms, bond lengths and octahedron tilt angles are given for four crystals. Conventional neutron diffraction patterns for Lueshe lueshite recorded over the temperature range 11–1,000 K confirm that lueshite does not adopt space group Pbma within these temperatures. Neutron diffraction indicates no phase changes on cooling from room temperature to 11 K. None of these neutron diffraction data give satisfactorily refinements but suggest that this is the space group Pbnm . Time-of-flight neutron diffraction patterns for Lueshe lueshite recorded from room temperature to 700 °C demonstrate phase transitions above 550 °C from Cmcm through P 4 /mbm to P m 3 ¯ m above 650 °C. Cell dimensions and atomic coordinates of the atoms are given for the three high-temperature phases. The room temperature to 400 °C structures cannot be satisfactorily resolved, and it is suggested that the lueshite at room temperature consists of domains of pinned metastable phases with orthorhombic and/or monoclinic structures. However, the sequence of high-temperature phase transitions observed is similar to those determined for synthetic NaTaO 3 , suggesting that the equilibrated room temperature structure of lueshite is orthorhombic Pbnm .
doi_str_mv 10.1007/s00269-014-0657-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262078193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262078193</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-4bd0a505417d09cc09a426632adde4af9e8068c821f3bad5e02a2323fa6d4d03</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuC5-jMJJvdHKWoFQq99B6ym6xtqbs1yQr996as4MnTHN733mMeY_cIjwhQPUUAUpoDSg6qrDhesBlKQZyA8JLNQEjiWGm8Zjcx7iGDoipnjNZN9OHbpt3Qx2Loi7T1RRtOMdlDEVMY2zQGn5WuOIw-bnfJ37Krzh6iv_u9c7Z5fdkslny1fntfPK-4FUInLhsHtoRSYuVAty1oK0kpQdY5L22nfQ2qbmvCTjTWlR7IkiDRWeWkAzFnD1PsMQxfuTqZ_TCGPjcaIkVQ1ahFpnCi2jDEGHxnjmH3acPJIJjzMmZaxuSHzXkZg9lDkydmtv_w4S_5f9MP9p5lcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262078193</pqid></control><display><type>article</type><title>Observations on the crystal structures of lueshite</title><source>SpringerNature Journals</source><creator>Mitchell, Roger H. ; Burns, Peter C. ; Knight, Kevin S. ; Howard, Christopher J. ; Chakhmouradian, Anton R.</creator><creatorcontrib>Mitchell, Roger H. ; Burns, Peter C. ; Knight, Kevin S. ; Howard, Christopher J. ; Chakhmouradian, Anton R.</creatorcontrib><description>Laboratory powder XRD patterns of the perovskite-group mineral lueshite from the type locality (Lueshe, Kivu, DRC) and pure NaNbO 3 demonstrate that lueshite does not adopt the same space group ( Pbma; #57 ) as the synthetic compound. The crystal structures of lueshite (2 samples) from Lueshe, Mont Saint-Hilaire (Quebec, Canada) and Sallanlatvi (Kola, Russia) have been determined by single-crystal CCD X-ray diffraction. These room temperature X-ray data for all single-crystal samples can be satisfactorily refined in the orthorhombic space group Pbnm (#62). Cell dimensions, atomic coordinates of the atoms, bond lengths and octahedron tilt angles are given for four crystals. Conventional neutron diffraction patterns for Lueshe lueshite recorded over the temperature range 11–1,000 K confirm that lueshite does not adopt space group Pbma within these temperatures. Neutron diffraction indicates no phase changes on cooling from room temperature to 11 K. None of these neutron diffraction data give satisfactorily refinements but suggest that this is the space group Pbnm . Time-of-flight neutron diffraction patterns for Lueshe lueshite recorded from room temperature to 700 °C demonstrate phase transitions above 550 °C from Cmcm through P 4 /mbm to P m 3 ¯ m above 650 °C. Cell dimensions and atomic coordinates of the atoms are given for the three high-temperature phases. The room temperature to 400 °C structures cannot be satisfactorily resolved, and it is suggested that the lueshite at room temperature consists of domains of pinned metastable phases with orthorhombic and/or monoclinic structures. However, the sequence of high-temperature phase transitions observed is similar to those determined for synthetic NaTaO 3 , suggesting that the equilibrated room temperature structure of lueshite is orthorhombic Pbnm .</description><identifier>ISSN: 0342-1791</identifier><identifier>EISSN: 1432-2021</identifier><identifier>DOI: 10.1007/s00269-014-0657-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chemical bonds ; Crystal structure ; Crystallography and Scattering Methods ; Crystals ; Diffraction patterns ; Domains ; Earth and Environmental Science ; Earth Sciences ; Geochemistry ; High temperature ; Metastable phases ; Mineral Resources ; Mineralogy ; Neutron diffraction ; Neutrons ; Original Paper ; Perovskites ; Phase transitions ; Single crystals ; Temperature ; X-ray diffraction</subject><ispartof>Physics and chemistry of minerals, 2014-06, Vol.41 (6), p.393-401</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Physics and Chemistry of Minerals is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-4bd0a505417d09cc09a426632adde4af9e8068c821f3bad5e02a2323fa6d4d03</citedby><cites>FETCH-LOGICAL-a339t-4bd0a505417d09cc09a426632adde4af9e8068c821f3bad5e02a2323fa6d4d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00269-014-0657-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00269-014-0657-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mitchell, Roger H.</creatorcontrib><creatorcontrib>Burns, Peter C.</creatorcontrib><creatorcontrib>Knight, Kevin S.</creatorcontrib><creatorcontrib>Howard, Christopher J.</creatorcontrib><creatorcontrib>Chakhmouradian, Anton R.</creatorcontrib><title>Observations on the crystal structures of lueshite</title><title>Physics and chemistry of minerals</title><addtitle>Phys Chem Minerals</addtitle><description>Laboratory powder XRD patterns of the perovskite-group mineral lueshite from the type locality (Lueshe, Kivu, DRC) and pure NaNbO 3 demonstrate that lueshite does not adopt the same space group ( Pbma; #57 ) as the synthetic compound. The crystal structures of lueshite (2 samples) from Lueshe, Mont Saint-Hilaire (Quebec, Canada) and Sallanlatvi (Kola, Russia) have been determined by single-crystal CCD X-ray diffraction. These room temperature X-ray data for all single-crystal samples can be satisfactorily refined in the orthorhombic space group Pbnm (#62). Cell dimensions, atomic coordinates of the atoms, bond lengths and octahedron tilt angles are given for four crystals. Conventional neutron diffraction patterns for Lueshe lueshite recorded over the temperature range 11–1,000 K confirm that lueshite does not adopt space group Pbma within these temperatures. Neutron diffraction indicates no phase changes on cooling from room temperature to 11 K. None of these neutron diffraction data give satisfactorily refinements but suggest that this is the space group Pbnm . Time-of-flight neutron diffraction patterns for Lueshe lueshite recorded from room temperature to 700 °C demonstrate phase transitions above 550 °C from Cmcm through P 4 /mbm to P m 3 ¯ m above 650 °C. Cell dimensions and atomic coordinates of the atoms are given for the three high-temperature phases. The room temperature to 400 °C structures cannot be satisfactorily resolved, and it is suggested that the lueshite at room temperature consists of domains of pinned metastable phases with orthorhombic and/or monoclinic structures. However, the sequence of high-temperature phase transitions observed is similar to those determined for synthetic NaTaO 3 , suggesting that the equilibrated room temperature structure of lueshite is orthorhombic Pbnm .</description><subject>Chemical bonds</subject><subject>Crystal structure</subject><subject>Crystallography and Scattering Methods</subject><subject>Crystals</subject><subject>Diffraction patterns</subject><subject>Domains</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geochemistry</subject><subject>High temperature</subject><subject>Metastable phases</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Neutron diffraction</subject><subject>Neutrons</subject><subject>Original Paper</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Single crystals</subject><subject>Temperature</subject><subject>X-ray diffraction</subject><issn>0342-1791</issn><issn>1432-2021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wNuC5-jMJJvdHKWoFQq99B6ym6xtqbs1yQr996as4MnTHN733mMeY_cIjwhQPUUAUpoDSg6qrDhesBlKQZyA8JLNQEjiWGm8Zjcx7iGDoipnjNZN9OHbpt3Qx2Loi7T1RRtOMdlDEVMY2zQGn5WuOIw-bnfJ37Krzh6iv_u9c7Z5fdkslny1fntfPK-4FUInLhsHtoRSYuVAty1oK0kpQdY5L22nfQ2qbmvCTjTWlR7IkiDRWeWkAzFnD1PsMQxfuTqZ_TCGPjcaIkVQ1ahFpnCi2jDEGHxnjmH3acPJIJjzMmZaxuSHzXkZg9lDkydmtv_w4S_5f9MP9p5lcQ</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Mitchell, Roger H.</creator><creator>Burns, Peter C.</creator><creator>Knight, Kevin S.</creator><creator>Howard, Christopher J.</creator><creator>Chakhmouradian, Anton R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20140601</creationdate><title>Observations on the crystal structures of lueshite</title><author>Mitchell, Roger H. ; Burns, Peter C. ; Knight, Kevin S. ; Howard, Christopher J. ; Chakhmouradian, Anton R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-4bd0a505417d09cc09a426632adde4af9e8068c821f3bad5e02a2323fa6d4d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemical bonds</topic><topic>Crystal structure</topic><topic>Crystallography and Scattering Methods</topic><topic>Crystals</topic><topic>Diffraction patterns</topic><topic>Domains</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geochemistry</topic><topic>High temperature</topic><topic>Metastable phases</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Neutron diffraction</topic><topic>Neutrons</topic><topic>Original Paper</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Single crystals</topic><topic>Temperature</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitchell, Roger H.</creatorcontrib><creatorcontrib>Burns, Peter C.</creatorcontrib><creatorcontrib>Knight, Kevin S.</creatorcontrib><creatorcontrib>Howard, Christopher J.</creatorcontrib><creatorcontrib>Chakhmouradian, Anton R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Physics and chemistry of minerals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitchell, Roger H.</au><au>Burns, Peter C.</au><au>Knight, Kevin S.</au><au>Howard, Christopher J.</au><au>Chakhmouradian, Anton R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observations on the crystal structures of lueshite</atitle><jtitle>Physics and chemistry of minerals</jtitle><stitle>Phys Chem Minerals</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>41</volume><issue>6</issue><spage>393</spage><epage>401</epage><pages>393-401</pages><issn>0342-1791</issn><eissn>1432-2021</eissn><abstract>Laboratory powder XRD patterns of the perovskite-group mineral lueshite from the type locality (Lueshe, Kivu, DRC) and pure NaNbO 3 demonstrate that lueshite does not adopt the same space group ( Pbma; #57 ) as the synthetic compound. The crystal structures of lueshite (2 samples) from Lueshe, Mont Saint-Hilaire (Quebec, Canada) and Sallanlatvi (Kola, Russia) have been determined by single-crystal CCD X-ray diffraction. These room temperature X-ray data for all single-crystal samples can be satisfactorily refined in the orthorhombic space group Pbnm (#62). Cell dimensions, atomic coordinates of the atoms, bond lengths and octahedron tilt angles are given for four crystals. Conventional neutron diffraction patterns for Lueshe lueshite recorded over the temperature range 11–1,000 K confirm that lueshite does not adopt space group Pbma within these temperatures. Neutron diffraction indicates no phase changes on cooling from room temperature to 11 K. None of these neutron diffraction data give satisfactorily refinements but suggest that this is the space group Pbnm . Time-of-flight neutron diffraction patterns for Lueshe lueshite recorded from room temperature to 700 °C demonstrate phase transitions above 550 °C from Cmcm through P 4 /mbm to P m 3 ¯ m above 650 °C. Cell dimensions and atomic coordinates of the atoms are given for the three high-temperature phases. The room temperature to 400 °C structures cannot be satisfactorily resolved, and it is suggested that the lueshite at room temperature consists of domains of pinned metastable phases with orthorhombic and/or monoclinic structures. However, the sequence of high-temperature phase transitions observed is similar to those determined for synthetic NaTaO 3 , suggesting that the equilibrated room temperature structure of lueshite is orthorhombic Pbnm .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00269-014-0657-1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0342-1791
ispartof Physics and chemistry of minerals, 2014-06, Vol.41 (6), p.393-401
issn 0342-1791
1432-2021
language eng
recordid cdi_proquest_journals_2262078193
source SpringerNature Journals
subjects Chemical bonds
Crystal structure
Crystallography and Scattering Methods
Crystals
Diffraction patterns
Domains
Earth and Environmental Science
Earth Sciences
Geochemistry
High temperature
Metastable phases
Mineral Resources
Mineralogy
Neutron diffraction
Neutrons
Original Paper
Perovskites
Phase transitions
Single crystals
Temperature
X-ray diffraction
title Observations on the crystal structures of lueshite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observations%20on%20the%20crystal%20structures%20of%20lueshite&rft.jtitle=Physics%20and%20chemistry%20of%20minerals&rft.au=Mitchell,%20Roger%20H.&rft.date=2014-06-01&rft.volume=41&rft.issue=6&rft.spage=393&rft.epage=401&rft.pages=393-401&rft.issn=0342-1791&rft.eissn=1432-2021&rft_id=info:doi/10.1007/s00269-014-0657-1&rft_dat=%3Cproquest_cross%3E2262078193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262078193&rft_id=info:pmid/&rfr_iscdi=true