Current Status of Titanium Recycling and Related Technologies
The major resource for recycling Ti is currently in-house Ti scrap generated in smelting and fabrication processes instead of postconsumer Ti products, and the actual recycling rate including cascade recycling in the smelting and fabrication industry is high. The major impurities in Ti scrap are O a...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2019-06, Vol.71 (6), p.1981-1990 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1990 |
---|---|
container_issue | 6 |
container_start_page | 1981 |
container_title | JOM (1989) |
container_volume | 71 |
creator | Takeda, Osamu Okabe, Toru H. |
description | The major resource for recycling Ti is currently in-house Ti scrap generated in smelting and fabrication processes instead of postconsumer Ti products, and the actual recycling rate including cascade recycling in the smelting and fabrication industry is high. The major impurities in Ti scrap are O and Fe. High-grade Ti scrap with low O and Fe concentrations is remelted to obtain Ti and its alloys. On the other hand, low-grade Ti scrap with high O and Fe concentrations is used as ferrotitanium for the steel industry. However, if demand for Ti drastically increases, the amount of low-grade Ti scrap generated would exceed the demand for ferrotitanium. Before this happens, technologies for anti-contamination or for efficient O and Fe removal must be developed for efficient utilization of Ti. Herein, the current status of Ti scrap generation and its recycling flow are reviewed. New developments in Ti recycling technology are also discussed. |
doi_str_mv | 10.1007/s11837-018-3278-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262019420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262019420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-3a3f982d3147c179770940432272b56eaabc0d48fcbc71fb8d50de14abd969cf3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC52gmyTbJwYMUv6AgaD2HbD7qlm22JruH_ntTVvDkaWbgfd6BB6FrILdAiLjLAJIJTEBiRoXEcIJmUHOGQdZwWnbCBeaSyXN0kfOWFIYrmKH75ZiSj0P1MZhhzFUfqnU7mNiOu-rd24Pt2ripTHTl6szgXbX29iv2Xb9pfb5EZ8F02V_9zjn6fHpcL1_w6u35dfmwwpZJOmBmWFCSOgZcWBBKCKI44YxSQZt64Y1pLHFcBttYAaGRribOAzeNUwtlA5ujm6l3n_rv0edBb_sxxfJSU7qgBBSnpKRgStnU55x80PvU7kw6aCD6aElPlnSxpI-WNBSGTkwu2bjx6a_5f-gHFrNpWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262019420</pqid></control><display><type>article</type><title>Current Status of Titanium Recycling and Related Technologies</title><source>Springer Nature - Complete Springer Journals</source><creator>Takeda, Osamu ; Okabe, Toru H.</creator><creatorcontrib>Takeda, Osamu ; Okabe, Toru H.</creatorcontrib><description>The major resource for recycling Ti is currently in-house Ti scrap generated in smelting and fabrication processes instead of postconsumer Ti products, and the actual recycling rate including cascade recycling in the smelting and fabrication industry is high. The major impurities in Ti scrap are O and Fe. High-grade Ti scrap with low O and Fe concentrations is remelted to obtain Ti and its alloys. On the other hand, low-grade Ti scrap with high O and Fe concentrations is used as ferrotitanium for the steel industry. However, if demand for Ti drastically increases, the amount of low-grade Ti scrap generated would exceed the demand for ferrotitanium. Before this happens, technologies for anti-contamination or for efficient O and Fe removal must be developed for efficient utilization of Ti. Herein, the current status of Ti scrap generation and its recycling flow are reviewed. New developments in Ti recycling technology are also discussed.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-018-3278-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aircraft ; Aircraft industry ; Alloys ; Aluminum ; Chemistry/Food Science ; Earth Sciences ; Engineering ; Environment ; Ferrotitanium ; Iron and steel industry ; Metallurgy ; Metals ; Physics ; Rare Metal Recovery from Secondary Resources ; Raw materials ; Recycling ; Scrap ; Smelting ; Steel industry ; Steel production ; Steel scrap ; Technological change ; Titanium</subject><ispartof>JOM (1989), 2019-06, Vol.71 (6), p.1981-1990</ispartof><rights>The Minerals, Metals & Materials Society 2018</rights><rights>Copyright Springer Nature B.V. Jun 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-3a3f982d3147c179770940432272b56eaabc0d48fcbc71fb8d50de14abd969cf3</citedby><cites>FETCH-LOGICAL-c382t-3a3f982d3147c179770940432272b56eaabc0d48fcbc71fb8d50de14abd969cf3</cites><orcidid>0000-0002-5257-6680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-018-3278-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-018-3278-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Takeda, Osamu</creatorcontrib><creatorcontrib>Okabe, Toru H.</creatorcontrib><title>Current Status of Titanium Recycling and Related Technologies</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>The major resource for recycling Ti is currently in-house Ti scrap generated in smelting and fabrication processes instead of postconsumer Ti products, and the actual recycling rate including cascade recycling in the smelting and fabrication industry is high. The major impurities in Ti scrap are O and Fe. High-grade Ti scrap with low O and Fe concentrations is remelted to obtain Ti and its alloys. On the other hand, low-grade Ti scrap with high O and Fe concentrations is used as ferrotitanium for the steel industry. However, if demand for Ti drastically increases, the amount of low-grade Ti scrap generated would exceed the demand for ferrotitanium. Before this happens, technologies for anti-contamination or for efficient O and Fe removal must be developed for efficient utilization of Ti. Herein, the current status of Ti scrap generation and its recycling flow are reviewed. New developments in Ti recycling technology are also discussed.</description><subject>Aircraft</subject><subject>Aircraft industry</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Chemistry/Food Science</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>Ferrotitanium</subject><subject>Iron and steel industry</subject><subject>Metallurgy</subject><subject>Metals</subject><subject>Physics</subject><subject>Rare Metal Recovery from Secondary Resources</subject><subject>Raw materials</subject><subject>Recycling</subject><subject>Scrap</subject><subject>Smelting</subject><subject>Steel industry</subject><subject>Steel production</subject><subject>Steel scrap</subject><subject>Technological change</subject><subject>Titanium</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuC52gmyTbJwYMUv6AgaD2HbD7qlm22JruH_ntTVvDkaWbgfd6BB6FrILdAiLjLAJIJTEBiRoXEcIJmUHOGQdZwWnbCBeaSyXN0kfOWFIYrmKH75ZiSj0P1MZhhzFUfqnU7mNiOu-rd24Pt2ripTHTl6szgXbX29iv2Xb9pfb5EZ8F02V_9zjn6fHpcL1_w6u35dfmwwpZJOmBmWFCSOgZcWBBKCKI44YxSQZt64Y1pLHFcBttYAaGRribOAzeNUwtlA5ujm6l3n_rv0edBb_sxxfJSU7qgBBSnpKRgStnU55x80PvU7kw6aCD6aElPlnSxpI-WNBSGTkwu2bjx6a_5f-gHFrNpWg</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Takeda, Osamu</creator><creator>Okabe, Toru H.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-5257-6680</orcidid></search><sort><creationdate>20190601</creationdate><title>Current Status of Titanium Recycling and Related Technologies</title><author>Takeda, Osamu ; Okabe, Toru H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-3a3f982d3147c179770940432272b56eaabc0d48fcbc71fb8d50de14abd969cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aircraft</topic><topic>Aircraft industry</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Chemistry/Food Science</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>Ferrotitanium</topic><topic>Iron and steel industry</topic><topic>Metallurgy</topic><topic>Metals</topic><topic>Physics</topic><topic>Rare Metal Recovery from Secondary Resources</topic><topic>Raw materials</topic><topic>Recycling</topic><topic>Scrap</topic><topic>Smelting</topic><topic>Steel industry</topic><topic>Steel production</topic><topic>Steel scrap</topic><topic>Technological change</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takeda, Osamu</creatorcontrib><creatorcontrib>Okabe, Toru H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takeda, Osamu</au><au>Okabe, Toru H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current Status of Titanium Recycling and Related Technologies</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>71</volume><issue>6</issue><spage>1981</spage><epage>1990</epage><pages>1981-1990</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>The major resource for recycling Ti is currently in-house Ti scrap generated in smelting and fabrication processes instead of postconsumer Ti products, and the actual recycling rate including cascade recycling in the smelting and fabrication industry is high. The major impurities in Ti scrap are O and Fe. High-grade Ti scrap with low O and Fe concentrations is remelted to obtain Ti and its alloys. On the other hand, low-grade Ti scrap with high O and Fe concentrations is used as ferrotitanium for the steel industry. However, if demand for Ti drastically increases, the amount of low-grade Ti scrap generated would exceed the demand for ferrotitanium. Before this happens, technologies for anti-contamination or for efficient O and Fe removal must be developed for efficient utilization of Ti. Herein, the current status of Ti scrap generation and its recycling flow are reviewed. New developments in Ti recycling technology are also discussed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-018-3278-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5257-6680</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2019-06, Vol.71 (6), p.1981-1990 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_proquest_journals_2262019420 |
source | Springer Nature - Complete Springer Journals |
subjects | Aircraft Aircraft industry Alloys Aluminum Chemistry/Food Science Earth Sciences Engineering Environment Ferrotitanium Iron and steel industry Metallurgy Metals Physics Rare Metal Recovery from Secondary Resources Raw materials Recycling Scrap Smelting Steel industry Steel production Steel scrap Technological change Titanium |
title | Current Status of Titanium Recycling and Related Technologies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%20Status%20of%20Titanium%20Recycling%20and%20Related%20Technologies&rft.jtitle=JOM%20(1989)&rft.au=Takeda,%20Osamu&rft.date=2019-06-01&rft.volume=71&rft.issue=6&rft.spage=1981&rft.epage=1990&rft.pages=1981-1990&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-018-3278-1&rft_dat=%3Cproquest_cross%3E2262019420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262019420&rft_id=info:pmid/&rfr_iscdi=true |