Current Status of Titanium Recycling and Related Technologies

The major resource for recycling Ti is currently in-house Ti scrap generated in smelting and fabrication processes instead of postconsumer Ti products, and the actual recycling rate including cascade recycling in the smelting and fabrication industry is high. The major impurities in Ti scrap are O a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2019-06, Vol.71 (6), p.1981-1990
Hauptverfasser: Takeda, Osamu, Okabe, Toru H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1990
container_issue 6
container_start_page 1981
container_title JOM (1989)
container_volume 71
creator Takeda, Osamu
Okabe, Toru H.
description The major resource for recycling Ti is currently in-house Ti scrap generated in smelting and fabrication processes instead of postconsumer Ti products, and the actual recycling rate including cascade recycling in the smelting and fabrication industry is high. The major impurities in Ti scrap are O and Fe. High-grade Ti scrap with low O and Fe concentrations is remelted to obtain Ti and its alloys. On the other hand, low-grade Ti scrap with high O and Fe concentrations is used as ferrotitanium for the steel industry. However, if demand for Ti drastically increases, the amount of low-grade Ti scrap generated would exceed the demand for ferrotitanium. Before this happens, technologies for anti-contamination or for efficient O and Fe removal must be developed for efficient utilization of Ti. Herein, the current status of Ti scrap generation and its recycling flow are reviewed. New developments in Ti recycling technology are also discussed.
doi_str_mv 10.1007/s11837-018-3278-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262019420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262019420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-3a3f982d3147c179770940432272b56eaabc0d48fcbc71fb8d50de14abd969cf3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC52gmyTbJwYMUv6AgaD2HbD7qlm22JruH_ntTVvDkaWbgfd6BB6FrILdAiLjLAJIJTEBiRoXEcIJmUHOGQdZwWnbCBeaSyXN0kfOWFIYrmKH75ZiSj0P1MZhhzFUfqnU7mNiOu-rd24Pt2ripTHTl6szgXbX29iv2Xb9pfb5EZ8F02V_9zjn6fHpcL1_w6u35dfmwwpZJOmBmWFCSOgZcWBBKCKI44YxSQZt64Y1pLHFcBttYAaGRribOAzeNUwtlA5ujm6l3n_rv0edBb_sxxfJSU7qgBBSnpKRgStnU55x80PvU7kw6aCD6aElPlnSxpI-WNBSGTkwu2bjx6a_5f-gHFrNpWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262019420</pqid></control><display><type>article</type><title>Current Status of Titanium Recycling and Related Technologies</title><source>Springer Nature - Complete Springer Journals</source><creator>Takeda, Osamu ; Okabe, Toru H.</creator><creatorcontrib>Takeda, Osamu ; Okabe, Toru H.</creatorcontrib><description>The major resource for recycling Ti is currently in-house Ti scrap generated in smelting and fabrication processes instead of postconsumer Ti products, and the actual recycling rate including cascade recycling in the smelting and fabrication industry is high. The major impurities in Ti scrap are O and Fe. High-grade Ti scrap with low O and Fe concentrations is remelted to obtain Ti and its alloys. On the other hand, low-grade Ti scrap with high O and Fe concentrations is used as ferrotitanium for the steel industry. However, if demand for Ti drastically increases, the amount of low-grade Ti scrap generated would exceed the demand for ferrotitanium. Before this happens, technologies for anti-contamination or for efficient O and Fe removal must be developed for efficient utilization of Ti. Herein, the current status of Ti scrap generation and its recycling flow are reviewed. New developments in Ti recycling technology are also discussed.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-018-3278-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aircraft ; Aircraft industry ; Alloys ; Aluminum ; Chemistry/Food Science ; Earth Sciences ; Engineering ; Environment ; Ferrotitanium ; Iron and steel industry ; Metallurgy ; Metals ; Physics ; Rare Metal Recovery from Secondary Resources ; Raw materials ; Recycling ; Scrap ; Smelting ; Steel industry ; Steel production ; Steel scrap ; Technological change ; Titanium</subject><ispartof>JOM (1989), 2019-06, Vol.71 (6), p.1981-1990</ispartof><rights>The Minerals, Metals &amp; Materials Society 2018</rights><rights>Copyright Springer Nature B.V. Jun 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-3a3f982d3147c179770940432272b56eaabc0d48fcbc71fb8d50de14abd969cf3</citedby><cites>FETCH-LOGICAL-c382t-3a3f982d3147c179770940432272b56eaabc0d48fcbc71fb8d50de14abd969cf3</cites><orcidid>0000-0002-5257-6680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-018-3278-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-018-3278-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Takeda, Osamu</creatorcontrib><creatorcontrib>Okabe, Toru H.</creatorcontrib><title>Current Status of Titanium Recycling and Related Technologies</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>The major resource for recycling Ti is currently in-house Ti scrap generated in smelting and fabrication processes instead of postconsumer Ti products, and the actual recycling rate including cascade recycling in the smelting and fabrication industry is high. The major impurities in Ti scrap are O and Fe. High-grade Ti scrap with low O and Fe concentrations is remelted to obtain Ti and its alloys. On the other hand, low-grade Ti scrap with high O and Fe concentrations is used as ferrotitanium for the steel industry. However, if demand for Ti drastically increases, the amount of low-grade Ti scrap generated would exceed the demand for ferrotitanium. Before this happens, technologies for anti-contamination or for efficient O and Fe removal must be developed for efficient utilization of Ti. Herein, the current status of Ti scrap generation and its recycling flow are reviewed. New developments in Ti recycling technology are also discussed.</description><subject>Aircraft</subject><subject>Aircraft industry</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Chemistry/Food Science</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>Ferrotitanium</subject><subject>Iron and steel industry</subject><subject>Metallurgy</subject><subject>Metals</subject><subject>Physics</subject><subject>Rare Metal Recovery from Secondary Resources</subject><subject>Raw materials</subject><subject>Recycling</subject><subject>Scrap</subject><subject>Smelting</subject><subject>Steel industry</subject><subject>Steel production</subject><subject>Steel scrap</subject><subject>Technological change</subject><subject>Titanium</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuC52gmyTbJwYMUv6AgaD2HbD7qlm22JruH_ntTVvDkaWbgfd6BB6FrILdAiLjLAJIJTEBiRoXEcIJmUHOGQdZwWnbCBeaSyXN0kfOWFIYrmKH75ZiSj0P1MZhhzFUfqnU7mNiOu-rd24Pt2ripTHTl6szgXbX29iv2Xb9pfb5EZ8F02V_9zjn6fHpcL1_w6u35dfmwwpZJOmBmWFCSOgZcWBBKCKI44YxSQZt64Y1pLHFcBttYAaGRribOAzeNUwtlA5ujm6l3n_rv0edBb_sxxfJSU7qgBBSnpKRgStnU55x80PvU7kw6aCD6aElPlnSxpI-WNBSGTkwu2bjx6a_5f-gHFrNpWg</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Takeda, Osamu</creator><creator>Okabe, Toru H.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-5257-6680</orcidid></search><sort><creationdate>20190601</creationdate><title>Current Status of Titanium Recycling and Related Technologies</title><author>Takeda, Osamu ; Okabe, Toru H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-3a3f982d3147c179770940432272b56eaabc0d48fcbc71fb8d50de14abd969cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aircraft</topic><topic>Aircraft industry</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Chemistry/Food Science</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>Ferrotitanium</topic><topic>Iron and steel industry</topic><topic>Metallurgy</topic><topic>Metals</topic><topic>Physics</topic><topic>Rare Metal Recovery from Secondary Resources</topic><topic>Raw materials</topic><topic>Recycling</topic><topic>Scrap</topic><topic>Smelting</topic><topic>Steel industry</topic><topic>Steel production</topic><topic>Steel scrap</topic><topic>Technological change</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takeda, Osamu</creatorcontrib><creatorcontrib>Okabe, Toru H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takeda, Osamu</au><au>Okabe, Toru H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current Status of Titanium Recycling and Related Technologies</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>71</volume><issue>6</issue><spage>1981</spage><epage>1990</epage><pages>1981-1990</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>The major resource for recycling Ti is currently in-house Ti scrap generated in smelting and fabrication processes instead of postconsumer Ti products, and the actual recycling rate including cascade recycling in the smelting and fabrication industry is high. The major impurities in Ti scrap are O and Fe. High-grade Ti scrap with low O and Fe concentrations is remelted to obtain Ti and its alloys. On the other hand, low-grade Ti scrap with high O and Fe concentrations is used as ferrotitanium for the steel industry. However, if demand for Ti drastically increases, the amount of low-grade Ti scrap generated would exceed the demand for ferrotitanium. Before this happens, technologies for anti-contamination or for efficient O and Fe removal must be developed for efficient utilization of Ti. Herein, the current status of Ti scrap generation and its recycling flow are reviewed. New developments in Ti recycling technology are also discussed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-018-3278-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5257-6680</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2019-06, Vol.71 (6), p.1981-1990
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_journals_2262019420
source Springer Nature - Complete Springer Journals
subjects Aircraft
Aircraft industry
Alloys
Aluminum
Chemistry/Food Science
Earth Sciences
Engineering
Environment
Ferrotitanium
Iron and steel industry
Metallurgy
Metals
Physics
Rare Metal Recovery from Secondary Resources
Raw materials
Recycling
Scrap
Smelting
Steel industry
Steel production
Steel scrap
Technological change
Titanium
title Current Status of Titanium Recycling and Related Technologies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%20Status%20of%20Titanium%20Recycling%20and%20Related%20Technologies&rft.jtitle=JOM%20(1989)&rft.au=Takeda,%20Osamu&rft.date=2019-06-01&rft.volume=71&rft.issue=6&rft.spage=1981&rft.epage=1990&rft.pages=1981-1990&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-018-3278-1&rft_dat=%3Cproquest_cross%3E2262019420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262019420&rft_id=info:pmid/&rfr_iscdi=true