Time-resolved rheometry of poly(ethylene terephthalate) during thermal and thermo-oxidative degradation
Time-resolved rheometry was employed to study thermal and thermo-oxidative degradation of poly(ethylene terephthalate) (PET). Degradation results in a vertical downward shift of the complex viscosity in air atmosphere. We conclude that reduction of moduli and viscosity is governed by oligomers emerg...
Gespeichert in:
Veröffentlicht in: | Rheologica acta 2016-10, Vol.55 (10), p.789-800 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 800 |
---|---|
container_issue | 10 |
container_start_page | 789 |
container_title | Rheologica acta |
container_volume | 55 |
creator | Kruse, Matthias Wagner, Manfred H. |
description | Time-resolved rheometry was employed to study thermal and thermo-oxidative degradation of poly(ethylene terephthalate) (PET). Degradation results in a vertical downward shift of the complex viscosity in air atmosphere. We conclude that reduction of moduli and viscosity is governed by oligomers emerging from chain scission and acting as plasticizer. Additionally, cross-linking leading to a yield stress is observed at long times. In nitrogen atmosphere, polycondensation increases the molar mass and viscosity and extends the shear thinning regime. With longer degradation times, thermal degradation prevails and leads to a vertical downward shift. The reaction kinetics of three PETs with different molar mass was analyzed by a time constant
τ
assuming first-order kinetics. The low molecular weight PET exhibits the largest time constant in air atmosphere, and hence the lowest degradation rate, while high molecular weight PET exhibits a small
τ
and rapid degradation. The enhancement rate in nitrogen is vice versa. |
doi_str_mv | 10.1007/s00397-016-0955-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262006064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262006064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-1a9d9f4b6a1d12ffa7ab81e2dcc613d67d5e2511b3aecf4f796b6821f08733b13</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouH78Ad4KXvQQzaRt2h5l8QsWvKznkDaTbZe2qUl2sf-9LRU8eZoH894b5kfIDbAHYCx79IzFRUYZCMqKNKX8hKwgiVMKKc9PyWpapzRJAc7Jhfd7xiATGV-R3bbpkDr0tj2ijlyNtsPgxsiaaLDteIehHlvsMQrocKhDrVoV8D7SB9f0uyjU6DrVRqrXi7bUfjdaheaIkcadU7O2_RU5M6r1eP07L8nny_N2_UY3H6_v66cNrRIeBwqq0IVJSqFAAzdGZarMAbmuKgGxFplOkU9flLHCyiQmK0Qpcg6G5VkclxBfktuld3D264A-yL09uH46KTkXnDHBRDK5YHFVznrv0MjBNZ1yowQmZ55y4SknnnLmKfmU4UvGD_Pn6P6a_w_9AO-7emg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262006064</pqid></control><display><type>article</type><title>Time-resolved rheometry of poly(ethylene terephthalate) during thermal and thermo-oxidative degradation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kruse, Matthias ; Wagner, Manfred H.</creator><creatorcontrib>Kruse, Matthias ; Wagner, Manfred H.</creatorcontrib><description>Time-resolved rheometry was employed to study thermal and thermo-oxidative degradation of poly(ethylene terephthalate) (PET). Degradation results in a vertical downward shift of the complex viscosity in air atmosphere. We conclude that reduction of moduli and viscosity is governed by oligomers emerging from chain scission and acting as plasticizer. Additionally, cross-linking leading to a yield stress is observed at long times. In nitrogen atmosphere, polycondensation increases the molar mass and viscosity and extends the shear thinning regime. With longer degradation times, thermal degradation prevails and leads to a vertical downward shift. The reaction kinetics of three PETs with different molar mass was analyzed by a time constant
τ
assuming first-order kinetics. The low molecular weight PET exhibits the largest time constant in air atmosphere, and hence the lowest degradation rate, while high molecular weight PET exhibits a small
τ
and rapid degradation. The enhancement rate in nitrogen is vice versa.</description><identifier>ISSN: 0035-4511</identifier><identifier>EISSN: 1435-1528</identifier><identifier>DOI: 10.1007/s00397-016-0955-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chain scission ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Crosslinking ; Ethylene ; Food Science ; Ions ; Low molecular weights ; Materials Science ; Mechanical Engineering ; Molecular weight ; Oligomers ; Original Contribution ; Oxidation ; Polyethylene terephthalate ; Polymer Sciences ; Reaction kinetics ; Rheometry ; Shear thinning (liquids) ; Soft and Granular Matter ; Thermal degradation ; Time constant ; Viscosity ; Yield stress</subject><ispartof>Rheologica acta, 2016-10, Vol.55 (10), p.789-800</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Rheologica Acta is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-1a9d9f4b6a1d12ffa7ab81e2dcc613d67d5e2511b3aecf4f796b6821f08733b13</citedby><cites>FETCH-LOGICAL-c423t-1a9d9f4b6a1d12ffa7ab81e2dcc613d67d5e2511b3aecf4f796b6821f08733b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00397-016-0955-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00397-016-0955-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Kruse, Matthias</creatorcontrib><creatorcontrib>Wagner, Manfred H.</creatorcontrib><title>Time-resolved rheometry of poly(ethylene terephthalate) during thermal and thermo-oxidative degradation</title><title>Rheologica acta</title><addtitle>Rheol Acta</addtitle><description>Time-resolved rheometry was employed to study thermal and thermo-oxidative degradation of poly(ethylene terephthalate) (PET). Degradation results in a vertical downward shift of the complex viscosity in air atmosphere. We conclude that reduction of moduli and viscosity is governed by oligomers emerging from chain scission and acting as plasticizer. Additionally, cross-linking leading to a yield stress is observed at long times. In nitrogen atmosphere, polycondensation increases the molar mass and viscosity and extends the shear thinning regime. With longer degradation times, thermal degradation prevails and leads to a vertical downward shift. The reaction kinetics of three PETs with different molar mass was analyzed by a time constant
τ
assuming first-order kinetics. The low molecular weight PET exhibits the largest time constant in air atmosphere, and hence the lowest degradation rate, while high molecular weight PET exhibits a small
τ
and rapid degradation. The enhancement rate in nitrogen is vice versa.</description><subject>Chain scission</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Crosslinking</subject><subject>Ethylene</subject><subject>Food Science</subject><subject>Ions</subject><subject>Low molecular weights</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>Molecular weight</subject><subject>Oligomers</subject><subject>Original Contribution</subject><subject>Oxidation</subject><subject>Polyethylene terephthalate</subject><subject>Polymer Sciences</subject><subject>Reaction kinetics</subject><subject>Rheometry</subject><subject>Shear thinning (liquids)</subject><subject>Soft and Granular Matter</subject><subject>Thermal degradation</subject><subject>Time constant</subject><subject>Viscosity</subject><subject>Yield stress</subject><issn>0035-4511</issn><issn>1435-1528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1LxDAQxYMouH78Ad4KXvQQzaRt2h5l8QsWvKznkDaTbZe2qUl2sf-9LRU8eZoH894b5kfIDbAHYCx79IzFRUYZCMqKNKX8hKwgiVMKKc9PyWpapzRJAc7Jhfd7xiATGV-R3bbpkDr0tj2ijlyNtsPgxsiaaLDteIehHlvsMQrocKhDrVoV8D7SB9f0uyjU6DrVRqrXi7bUfjdaheaIkcadU7O2_RU5M6r1eP07L8nny_N2_UY3H6_v66cNrRIeBwqq0IVJSqFAAzdGZarMAbmuKgGxFplOkU9flLHCyiQmK0Qpcg6G5VkclxBfktuld3D264A-yL09uH46KTkXnDHBRDK5YHFVznrv0MjBNZ1yowQmZ55y4SknnnLmKfmU4UvGD_Pn6P6a_w_9AO-7emg</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Kruse, Matthias</creator><creator>Wagner, Manfred H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161001</creationdate><title>Time-resolved rheometry of poly(ethylene terephthalate) during thermal and thermo-oxidative degradation</title><author>Kruse, Matthias ; Wagner, Manfred H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-1a9d9f4b6a1d12ffa7ab81e2dcc613d67d5e2511b3aecf4f796b6821f08733b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chain scission</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Crosslinking</topic><topic>Ethylene</topic><topic>Food Science</topic><topic>Ions</topic><topic>Low molecular weights</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>Molecular weight</topic><topic>Oligomers</topic><topic>Original Contribution</topic><topic>Oxidation</topic><topic>Polyethylene terephthalate</topic><topic>Polymer Sciences</topic><topic>Reaction kinetics</topic><topic>Rheometry</topic><topic>Shear thinning (liquids)</topic><topic>Soft and Granular Matter</topic><topic>Thermal degradation</topic><topic>Time constant</topic><topic>Viscosity</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruse, Matthias</creatorcontrib><creatorcontrib>Wagner, Manfred H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Rheologica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruse, Matthias</au><au>Wagner, Manfred H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-resolved rheometry of poly(ethylene terephthalate) during thermal and thermo-oxidative degradation</atitle><jtitle>Rheologica acta</jtitle><stitle>Rheol Acta</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>55</volume><issue>10</issue><spage>789</spage><epage>800</epage><pages>789-800</pages><issn>0035-4511</issn><eissn>1435-1528</eissn><abstract>Time-resolved rheometry was employed to study thermal and thermo-oxidative degradation of poly(ethylene terephthalate) (PET). Degradation results in a vertical downward shift of the complex viscosity in air atmosphere. We conclude that reduction of moduli and viscosity is governed by oligomers emerging from chain scission and acting as plasticizer. Additionally, cross-linking leading to a yield stress is observed at long times. In nitrogen atmosphere, polycondensation increases the molar mass and viscosity and extends the shear thinning regime. With longer degradation times, thermal degradation prevails and leads to a vertical downward shift. The reaction kinetics of three PETs with different molar mass was analyzed by a time constant
τ
assuming first-order kinetics. The low molecular weight PET exhibits the largest time constant in air atmosphere, and hence the lowest degradation rate, while high molecular weight PET exhibits a small
τ
and rapid degradation. The enhancement rate in nitrogen is vice versa.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00397-016-0955-2</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-4511 |
ispartof | Rheologica acta, 2016-10, Vol.55 (10), p.789-800 |
issn | 0035-4511 1435-1528 |
language | eng |
recordid | cdi_proquest_journals_2262006064 |
source | SpringerLink Journals - AutoHoldings |
subjects | Chain scission Characterization and Evaluation of Materials Chemistry and Materials Science Complex Fluids and Microfluidics Crosslinking Ethylene Food Science Ions Low molecular weights Materials Science Mechanical Engineering Molecular weight Oligomers Original Contribution Oxidation Polyethylene terephthalate Polymer Sciences Reaction kinetics Rheometry Shear thinning (liquids) Soft and Granular Matter Thermal degradation Time constant Viscosity Yield stress |
title | Time-resolved rheometry of poly(ethylene terephthalate) during thermal and thermo-oxidative degradation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-resolved%20rheometry%20of%20poly(ethylene%20terephthalate)%20during%20thermal%20and%20thermo-oxidative%20degradation&rft.jtitle=Rheologica%20acta&rft.au=Kruse,%20Matthias&rft.date=2016-10-01&rft.volume=55&rft.issue=10&rft.spage=789&rft.epage=800&rft.pages=789-800&rft.issn=0035-4511&rft.eissn=1435-1528&rft_id=info:doi/10.1007/s00397-016-0955-2&rft_dat=%3Cproquest_cross%3E2262006064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262006064&rft_id=info:pmid/&rfr_iscdi=true |