Time-resolved rheometry of poly(ethylene terephthalate) during thermal and thermo-oxidative degradation

Time-resolved rheometry was employed to study thermal and thermo-oxidative degradation of poly(ethylene terephthalate) (PET). Degradation results in a vertical downward shift of the complex viscosity in air atmosphere. We conclude that reduction of moduli and viscosity is governed by oligomers emerg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rheologica acta 2016-10, Vol.55 (10), p.789-800
Hauptverfasser: Kruse, Matthias, Wagner, Manfred H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 800
container_issue 10
container_start_page 789
container_title Rheologica acta
container_volume 55
creator Kruse, Matthias
Wagner, Manfred H.
description Time-resolved rheometry was employed to study thermal and thermo-oxidative degradation of poly(ethylene terephthalate) (PET). Degradation results in a vertical downward shift of the complex viscosity in air atmosphere. We conclude that reduction of moduli and viscosity is governed by oligomers emerging from chain scission and acting as plasticizer. Additionally, cross-linking leading to a yield stress is observed at long times. In nitrogen atmosphere, polycondensation increases the molar mass and viscosity and extends the shear thinning regime. With longer degradation times, thermal degradation prevails and leads to a vertical downward shift. The reaction kinetics of three PETs with different molar mass was analyzed by a time constant τ assuming first-order kinetics. The low molecular weight PET exhibits the largest time constant in air atmosphere, and hence the lowest degradation rate, while high molecular weight PET exhibits a small τ and rapid degradation. The enhancement rate in nitrogen is vice versa.
doi_str_mv 10.1007/s00397-016-0955-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262006064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262006064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-1a9d9f4b6a1d12ffa7ab81e2dcc613d67d5e2511b3aecf4f796b6821f08733b13</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouH78Ad4KXvQQzaRt2h5l8QsWvKznkDaTbZe2qUl2sf-9LRU8eZoH894b5kfIDbAHYCx79IzFRUYZCMqKNKX8hKwgiVMKKc9PyWpapzRJAc7Jhfd7xiATGV-R3bbpkDr0tj2ijlyNtsPgxsiaaLDteIehHlvsMQrocKhDrVoV8D7SB9f0uyjU6DrVRqrXi7bUfjdaheaIkcadU7O2_RU5M6r1eP07L8nny_N2_UY3H6_v66cNrRIeBwqq0IVJSqFAAzdGZarMAbmuKgGxFplOkU9flLHCyiQmK0Qpcg6G5VkclxBfktuld3D264A-yL09uH46KTkXnDHBRDK5YHFVznrv0MjBNZ1yowQmZ55y4SknnnLmKfmU4UvGD_Pn6P6a_w_9AO-7emg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262006064</pqid></control><display><type>article</type><title>Time-resolved rheometry of poly(ethylene terephthalate) during thermal and thermo-oxidative degradation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kruse, Matthias ; Wagner, Manfred H.</creator><creatorcontrib>Kruse, Matthias ; Wagner, Manfred H.</creatorcontrib><description>Time-resolved rheometry was employed to study thermal and thermo-oxidative degradation of poly(ethylene terephthalate) (PET). Degradation results in a vertical downward shift of the complex viscosity in air atmosphere. We conclude that reduction of moduli and viscosity is governed by oligomers emerging from chain scission and acting as plasticizer. Additionally, cross-linking leading to a yield stress is observed at long times. In nitrogen atmosphere, polycondensation increases the molar mass and viscosity and extends the shear thinning regime. With longer degradation times, thermal degradation prevails and leads to a vertical downward shift. The reaction kinetics of three PETs with different molar mass was analyzed by a time constant τ assuming first-order kinetics. The low molecular weight PET exhibits the largest time constant in air atmosphere, and hence the lowest degradation rate, while high molecular weight PET exhibits a small τ and rapid degradation. The enhancement rate in nitrogen is vice versa.</description><identifier>ISSN: 0035-4511</identifier><identifier>EISSN: 1435-1528</identifier><identifier>DOI: 10.1007/s00397-016-0955-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chain scission ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Crosslinking ; Ethylene ; Food Science ; Ions ; Low molecular weights ; Materials Science ; Mechanical Engineering ; Molecular weight ; Oligomers ; Original Contribution ; Oxidation ; Polyethylene terephthalate ; Polymer Sciences ; Reaction kinetics ; Rheometry ; Shear thinning (liquids) ; Soft and Granular Matter ; Thermal degradation ; Time constant ; Viscosity ; Yield stress</subject><ispartof>Rheologica acta, 2016-10, Vol.55 (10), p.789-800</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Rheologica Acta is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-1a9d9f4b6a1d12ffa7ab81e2dcc613d67d5e2511b3aecf4f796b6821f08733b13</citedby><cites>FETCH-LOGICAL-c423t-1a9d9f4b6a1d12ffa7ab81e2dcc613d67d5e2511b3aecf4f796b6821f08733b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00397-016-0955-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00397-016-0955-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Kruse, Matthias</creatorcontrib><creatorcontrib>Wagner, Manfred H.</creatorcontrib><title>Time-resolved rheometry of poly(ethylene terephthalate) during thermal and thermo-oxidative degradation</title><title>Rheologica acta</title><addtitle>Rheol Acta</addtitle><description>Time-resolved rheometry was employed to study thermal and thermo-oxidative degradation of poly(ethylene terephthalate) (PET). Degradation results in a vertical downward shift of the complex viscosity in air atmosphere. We conclude that reduction of moduli and viscosity is governed by oligomers emerging from chain scission and acting as plasticizer. Additionally, cross-linking leading to a yield stress is observed at long times. In nitrogen atmosphere, polycondensation increases the molar mass and viscosity and extends the shear thinning regime. With longer degradation times, thermal degradation prevails and leads to a vertical downward shift. The reaction kinetics of three PETs with different molar mass was analyzed by a time constant τ assuming first-order kinetics. The low molecular weight PET exhibits the largest time constant in air atmosphere, and hence the lowest degradation rate, while high molecular weight PET exhibits a small τ and rapid degradation. The enhancement rate in nitrogen is vice versa.</description><subject>Chain scission</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Crosslinking</subject><subject>Ethylene</subject><subject>Food Science</subject><subject>Ions</subject><subject>Low molecular weights</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>Molecular weight</subject><subject>Oligomers</subject><subject>Original Contribution</subject><subject>Oxidation</subject><subject>Polyethylene terephthalate</subject><subject>Polymer Sciences</subject><subject>Reaction kinetics</subject><subject>Rheometry</subject><subject>Shear thinning (liquids)</subject><subject>Soft and Granular Matter</subject><subject>Thermal degradation</subject><subject>Time constant</subject><subject>Viscosity</subject><subject>Yield stress</subject><issn>0035-4511</issn><issn>1435-1528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1LxDAQxYMouH78Ad4KXvQQzaRt2h5l8QsWvKznkDaTbZe2qUl2sf-9LRU8eZoH894b5kfIDbAHYCx79IzFRUYZCMqKNKX8hKwgiVMKKc9PyWpapzRJAc7Jhfd7xiATGV-R3bbpkDr0tj2ijlyNtsPgxsiaaLDteIehHlvsMQrocKhDrVoV8D7SB9f0uyjU6DrVRqrXi7bUfjdaheaIkcadU7O2_RU5M6r1eP07L8nny_N2_UY3H6_v66cNrRIeBwqq0IVJSqFAAzdGZarMAbmuKgGxFplOkU9flLHCyiQmK0Qpcg6G5VkclxBfktuld3D264A-yL09uH46KTkXnDHBRDK5YHFVznrv0MjBNZ1yowQmZ55y4SknnnLmKfmU4UvGD_Pn6P6a_w_9AO-7emg</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Kruse, Matthias</creator><creator>Wagner, Manfred H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161001</creationdate><title>Time-resolved rheometry of poly(ethylene terephthalate) during thermal and thermo-oxidative degradation</title><author>Kruse, Matthias ; Wagner, Manfred H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-1a9d9f4b6a1d12ffa7ab81e2dcc613d67d5e2511b3aecf4f796b6821f08733b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chain scission</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Crosslinking</topic><topic>Ethylene</topic><topic>Food Science</topic><topic>Ions</topic><topic>Low molecular weights</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>Molecular weight</topic><topic>Oligomers</topic><topic>Original Contribution</topic><topic>Oxidation</topic><topic>Polyethylene terephthalate</topic><topic>Polymer Sciences</topic><topic>Reaction kinetics</topic><topic>Rheometry</topic><topic>Shear thinning (liquids)</topic><topic>Soft and Granular Matter</topic><topic>Thermal degradation</topic><topic>Time constant</topic><topic>Viscosity</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruse, Matthias</creatorcontrib><creatorcontrib>Wagner, Manfred H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Rheologica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruse, Matthias</au><au>Wagner, Manfred H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-resolved rheometry of poly(ethylene terephthalate) during thermal and thermo-oxidative degradation</atitle><jtitle>Rheologica acta</jtitle><stitle>Rheol Acta</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>55</volume><issue>10</issue><spage>789</spage><epage>800</epage><pages>789-800</pages><issn>0035-4511</issn><eissn>1435-1528</eissn><abstract>Time-resolved rheometry was employed to study thermal and thermo-oxidative degradation of poly(ethylene terephthalate) (PET). Degradation results in a vertical downward shift of the complex viscosity in air atmosphere. We conclude that reduction of moduli and viscosity is governed by oligomers emerging from chain scission and acting as plasticizer. Additionally, cross-linking leading to a yield stress is observed at long times. In nitrogen atmosphere, polycondensation increases the molar mass and viscosity and extends the shear thinning regime. With longer degradation times, thermal degradation prevails and leads to a vertical downward shift. The reaction kinetics of three PETs with different molar mass was analyzed by a time constant τ assuming first-order kinetics. The low molecular weight PET exhibits the largest time constant in air atmosphere, and hence the lowest degradation rate, while high molecular weight PET exhibits a small τ and rapid degradation. The enhancement rate in nitrogen is vice versa.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00397-016-0955-2</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-4511
ispartof Rheologica acta, 2016-10, Vol.55 (10), p.789-800
issn 0035-4511
1435-1528
language eng
recordid cdi_proquest_journals_2262006064
source SpringerLink Journals - AutoHoldings
subjects Chain scission
Characterization and Evaluation of Materials
Chemistry and Materials Science
Complex Fluids and Microfluidics
Crosslinking
Ethylene
Food Science
Ions
Low molecular weights
Materials Science
Mechanical Engineering
Molecular weight
Oligomers
Original Contribution
Oxidation
Polyethylene terephthalate
Polymer Sciences
Reaction kinetics
Rheometry
Shear thinning (liquids)
Soft and Granular Matter
Thermal degradation
Time constant
Viscosity
Yield stress
title Time-resolved rheometry of poly(ethylene terephthalate) during thermal and thermo-oxidative degradation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-resolved%20rheometry%20of%20poly(ethylene%20terephthalate)%20during%20thermal%20and%20thermo-oxidative%20degradation&rft.jtitle=Rheologica%20acta&rft.au=Kruse,%20Matthias&rft.date=2016-10-01&rft.volume=55&rft.issue=10&rft.spage=789&rft.epage=800&rft.pages=789-800&rft.issn=0035-4511&rft.eissn=1435-1528&rft_id=info:doi/10.1007/s00397-016-0955-2&rft_dat=%3Cproquest_cross%3E2262006064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262006064&rft_id=info:pmid/&rfr_iscdi=true