A new variational self-regular traction-BEM formulation for inter-element continuity of displacement derivatives
In this work, a non-symmetric variational approach is derived to enforce C1,α continuity at inter-element nodes for the self-regular traction-BIE. This variational approach uses only Lagrangian C0 elements. Two separate algorithms are derived. The first one enforces C1,α continuity at smooth inter-e...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2003-12, Vol.32 (4-6), p.401-414 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 414 |
---|---|
container_issue | 4-6 |
container_start_page | 401 |
container_title | Computational mechanics |
container_volume | 32 |
creator | JORGE, A. B CRUSE, T. A FISHER, T. S RIBEIRO, G. O |
description | In this work, a non-symmetric variational approach is derived to enforce C1,α continuity at inter-element nodes for the self-regular traction-BIE. This variational approach uses only Lagrangian C0 elements. Two separate algorithms are derived. The first one enforces C1,α continuity at smooth inter-element nodes, and the second enforces continuity of displacement derivatives in global coordinates at corner nodes, where C1,α continuity cannot be enforced. The variational formulation for the traction-BIE is implemented in this work for two elastostatics problems with various discretizations and polynomial interpolants. Local and global measures of the discretization error are obtained by means of an error estimator recently derived by the authors. Comparisons are also made with the displacement-BIE, which does not require C1,α continuity for the displacement. The lack of smoothness of the displacement derivatives at the inter-element nodes is shown to be an important source of both local and global error for the traction-BIE formulation, especially for quadratic elements. The accuracy of the boundary solution obtained from the traction-BIE improves significantly when C1,α continuity is enforced where possible, i.e., at the smooth inter-element nodes only. |
doi_str_mv | 10.1007/s00466-003-0506-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261516772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261516772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-9821ced498b419e935d04a24983ed2199afe501aab274ec37e2e4ce2145e93183</originalsourceid><addsrcrecordid>eNpFUMtOwzAQtBBIlMIHcLOEOBrWrzg5lqo8pCIucLZcZ4NcpUmwk6L-PYlaidPuzM6MtEPILYcHDmAeE4DKMgYgGWjImDojM66kYFAIdU5mwE3OTGb0JblKaQvAdS71jHQL2uAv3bsYXB_axtU0YV2xiN9D7SLto_MTz55W77Rq425kJzztNDQ9RoY17rDpqW-bPjRD6A-0rWgZUlc7fzyVGMN-9O0xXZOLytUJb05zTr6eV5_LV7b-eHlbLtbMS-A9K3LBPZaqyDeKF1hIXYJyYsQSS8GLwlWogTu3EUahlwYFKo-CKz2KeS7n5O6Y28X2Z8DU2207xPG_ZIXIuOaZMWJU8aPKxzaliJXtYti5eLAc7FSsPRZrx2LtVKxVo-f-lOySd3UVXeND-jdqaWQuQP4Bwx95uQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261516772</pqid></control><display><type>article</type><title>A new variational self-regular traction-BEM formulation for inter-element continuity of displacement derivatives</title><source>SpringerLink Journals</source><creator>JORGE, A. B ; CRUSE, T. A ; FISHER, T. S ; RIBEIRO, G. O</creator><creatorcontrib>JORGE, A. B ; CRUSE, T. A ; FISHER, T. S ; RIBEIRO, G. O</creatorcontrib><description>In this work, a non-symmetric variational approach is derived to enforce C1,α continuity at inter-element nodes for the self-regular traction-BIE. This variational approach uses only Lagrangian C0 elements. Two separate algorithms are derived. The first one enforces C1,α continuity at smooth inter-element nodes, and the second enforces continuity of displacement derivatives in global coordinates at corner nodes, where C1,α continuity cannot be enforced. The variational formulation for the traction-BIE is implemented in this work for two elastostatics problems with various discretizations and polynomial interpolants. Local and global measures of the discretization error are obtained by means of an error estimator recently derived by the authors. Comparisons are also made with the displacement-BIE, which does not require C1,α continuity for the displacement. The lack of smoothness of the displacement derivatives at the inter-element nodes is shown to be an important source of both local and global error for the traction-BIE formulation, especially for quadratic elements. The accuracy of the boundary solution obtained from the traction-BIE improves significantly when C1,α continuity is enforced where possible, i.e., at the smooth inter-element nodes only.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-003-0506-4</identifier><identifier>CODEN: CMMEEE</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Algorithms ; Boundary-integral methods ; Computational techniques ; Continuity ; Derivatives ; Displacement ; Elastostatics ; Error analysis ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Nodes ; Physics ; Polynomials ; Smoothness ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Traction</subject><ispartof>Computational mechanics, 2003-12, Vol.32 (4-6), p.401-414</ispartof><rights>2004 INIST-CNRS</rights><rights>Computational Mechanics is a copyright of Springer, (2003). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-9821ced498b419e935d04a24983ed2199afe501aab274ec37e2e4ce2145e93183</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15373820$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>JORGE, A. B</creatorcontrib><creatorcontrib>CRUSE, T. A</creatorcontrib><creatorcontrib>FISHER, T. S</creatorcontrib><creatorcontrib>RIBEIRO, G. O</creatorcontrib><title>A new variational self-regular traction-BEM formulation for inter-element continuity of displacement derivatives</title><title>Computational mechanics</title><description>In this work, a non-symmetric variational approach is derived to enforce C1,α continuity at inter-element nodes for the self-regular traction-BIE. This variational approach uses only Lagrangian C0 elements. Two separate algorithms are derived. The first one enforces C1,α continuity at smooth inter-element nodes, and the second enforces continuity of displacement derivatives in global coordinates at corner nodes, where C1,α continuity cannot be enforced. The variational formulation for the traction-BIE is implemented in this work for two elastostatics problems with various discretizations and polynomial interpolants. Local and global measures of the discretization error are obtained by means of an error estimator recently derived by the authors. Comparisons are also made with the displacement-BIE, which does not require C1,α continuity for the displacement. The lack of smoothness of the displacement derivatives at the inter-element nodes is shown to be an important source of both local and global error for the traction-BIE formulation, especially for quadratic elements. The accuracy of the boundary solution obtained from the traction-BIE improves significantly when C1,α continuity is enforced where possible, i.e., at the smooth inter-element nodes only.</description><subject>Algorithms</subject><subject>Boundary-integral methods</subject><subject>Computational techniques</subject><subject>Continuity</subject><subject>Derivatives</subject><subject>Displacement</subject><subject>Elastostatics</subject><subject>Error analysis</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Nodes</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Smoothness</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Traction</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFUMtOwzAQtBBIlMIHcLOEOBrWrzg5lqo8pCIucLZcZ4NcpUmwk6L-PYlaidPuzM6MtEPILYcHDmAeE4DKMgYgGWjImDojM66kYFAIdU5mwE3OTGb0JblKaQvAdS71jHQL2uAv3bsYXB_axtU0YV2xiN9D7SLto_MTz55W77Rq425kJzztNDQ9RoY17rDpqW-bPjRD6A-0rWgZUlc7fzyVGMN-9O0xXZOLytUJb05zTr6eV5_LV7b-eHlbLtbMS-A9K3LBPZaqyDeKF1hIXYJyYsQSS8GLwlWogTu3EUahlwYFKo-CKz2KeS7n5O6Y28X2Z8DU2207xPG_ZIXIuOaZMWJU8aPKxzaliJXtYti5eLAc7FSsPRZrx2LtVKxVo-f-lOySd3UVXeND-jdqaWQuQP4Bwx95uQ</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>JORGE, A. B</creator><creator>CRUSE, T. A</creator><creator>FISHER, T. S</creator><creator>RIBEIRO, G. O</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20031201</creationdate><title>A new variational self-regular traction-BEM formulation for inter-element continuity of displacement derivatives</title><author>JORGE, A. B ; CRUSE, T. A ; FISHER, T. S ; RIBEIRO, G. O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-9821ced498b419e935d04a24983ed2199afe501aab274ec37e2e4ce2145e93183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Boundary-integral methods</topic><topic>Computational techniques</topic><topic>Continuity</topic><topic>Derivatives</topic><topic>Displacement</topic><topic>Elastostatics</topic><topic>Error analysis</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Nodes</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Smoothness</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Traction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JORGE, A. B</creatorcontrib><creatorcontrib>CRUSE, T. A</creatorcontrib><creatorcontrib>FISHER, T. S</creatorcontrib><creatorcontrib>RIBEIRO, G. O</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JORGE, A. B</au><au>CRUSE, T. A</au><au>FISHER, T. S</au><au>RIBEIRO, G. O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new variational self-regular traction-BEM formulation for inter-element continuity of displacement derivatives</atitle><jtitle>Computational mechanics</jtitle><date>2003-12-01</date><risdate>2003</risdate><volume>32</volume><issue>4-6</issue><spage>401</spage><epage>414</epage><pages>401-414</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><coden>CMMEEE</coden><abstract>In this work, a non-symmetric variational approach is derived to enforce C1,α continuity at inter-element nodes for the self-regular traction-BIE. This variational approach uses only Lagrangian C0 elements. Two separate algorithms are derived. The first one enforces C1,α continuity at smooth inter-element nodes, and the second enforces continuity of displacement derivatives in global coordinates at corner nodes, where C1,α continuity cannot be enforced. The variational formulation for the traction-BIE is implemented in this work for two elastostatics problems with various discretizations and polynomial interpolants. Local and global measures of the discretization error are obtained by means of an error estimator recently derived by the authors. Comparisons are also made with the displacement-BIE, which does not require C1,α continuity for the displacement. The lack of smoothness of the displacement derivatives at the inter-element nodes is shown to be an important source of both local and global error for the traction-BIE formulation, especially for quadratic elements. The accuracy of the boundary solution obtained from the traction-BIE improves significantly when C1,α continuity is enforced where possible, i.e., at the smooth inter-element nodes only.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s00466-003-0506-4</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2003-12, Vol.32 (4-6), p.401-414 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_journals_2261516772 |
source | SpringerLink Journals |
subjects | Algorithms Boundary-integral methods Computational techniques Continuity Derivatives Displacement Elastostatics Error analysis Exact sciences and technology Fundamental areas of phenomenology (including applications) Mathematical methods in physics Nodes Physics Polynomials Smoothness Solid mechanics Static elasticity Static elasticity (thermoelasticity...) Structural and continuum mechanics Traction |
title | A new variational self-regular traction-BEM formulation for inter-element continuity of displacement derivatives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A22%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20variational%20self-regular%20traction-BEM%20formulation%20for%20inter-element%20continuity%20of%20displacement%20derivatives&rft.jtitle=Computational%20mechanics&rft.au=JORGE,%20A.%20B&rft.date=2003-12-01&rft.volume=32&rft.issue=4-6&rft.spage=401&rft.epage=414&rft.pages=401-414&rft.issn=0178-7675&rft.eissn=1432-0924&rft.coden=CMMEEE&rft_id=info:doi/10.1007/s00466-003-0506-4&rft_dat=%3Cproquest_cross%3E2261516772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261516772&rft_id=info:pmid/&rfr_iscdi=true |