Finite element analysis of polymeric membrane and coating formation by solvent evaporation

The solvent evaporation process from acetone–cellulose acetate solutions is studied as a numerical experiment. The process is modeled as a coupled heat and mass transfer problem with a moving boundary. The resulting non-linear system of governing equations is solved with the Galerkin finite element...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2001-04, Vol.27 (4), p.332-340
Hauptverfasser: VERROS, G. D, MALAMATARIS, N. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 340
container_issue 4
container_start_page 332
container_title Computational mechanics
container_volume 27
creator VERROS, G. D
MALAMATARIS, N. A
description The solvent evaporation process from acetone–cellulose acetate solutions is studied as a numerical experiment. The process is modeled as a coupled heat and mass transfer problem with a moving boundary. The resulting non-linear system of governing equations is solved with the Galerkin finite element method. A parametric analysis is carried out and it is discussed in detail how the process conditions affect the evaporation rate, the temperature at the surface of the solution and the resulting morphology of the final product. This analysis may be applied in the modeling of polymeric membrane formation and in the drying of coatings.
doi_str_mv 10.1007/s004660000229
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261515873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261515873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-35f9b802793eb2dc718fb82e24629355fd880c4fcf0d6e9ece65df3e9dac47903</originalsourceid><addsrcrecordid>eNpVUMFKxDAUDKLgunr0HvBcfUmaJjnK4qqw4EUvXkqavkiXtqlJd6F_b9cV0Xd5j3kzAzOEXDO4ZQDqLgHkRQHzcG5OyILlgmdgeH5KFsCUzlSh5Dm5SGkLwKQWckHe103fjEixxQ77kdretlNqEg2eDqGdOoyNox12VbQ9zu-aumDHpv-gPsRuvkJPq4mm0O4PetzbIcRv-JKcedsmvPrZS_K2fnhdPWWbl8fn1f0mc9ywMRPSm0oDV0ZgxWunmPaV5sjzghshpa-1Bpd756Eu0KDDQtZeoKmty5UBsSQ3R98hhs8dprHchl2cc6SS84LJOakSMys7slwMKUX05RCbzsapZFAe6iv_1ffH1SZnWz_Hd036FRmtORPiC5bZb9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261515873</pqid></control><display><type>article</type><title>Finite element analysis of polymeric membrane and coating formation by solvent evaporation</title><source>SpringerLink Journals - AutoHoldings</source><creator>VERROS, G. D ; MALAMATARIS, N. A</creator><creatorcontrib>VERROS, G. D ; MALAMATARIS, N. A</creatorcontrib><description>The solvent evaporation process from acetone–cellulose acetate solutions is studied as a numerical experiment. The process is modeled as a coupled heat and mass transfer problem with a moving boundary. The resulting non-linear system of governing equations is solved with the Galerkin finite element method. A parametric analysis is carried out and it is discussed in detail how the process conditions affect the evaporation rate, the temperature at the surface of the solution and the resulting morphology of the final product. This analysis may be applied in the modeling of polymeric membrane formation and in the drying of coatings.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s004660000229</identifier><identifier>CODEN: CMMEEE</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Acetone ; Cellulose acetate ; Computational methods in continuum mechanics ; Continuum mechanics (soil mechanics...) ; Evaporation ; Evaporation rate ; Exact sciences and technology ; Finite element method ; Fundamental areas of phenomenology (including applications) ; Galerkin method ; Heat transfer ; Mass transfer ; Membranes, rods and strings ; Morphology ; Nonlinear equations ; Nonlinear systems ; Parametric analysis ; Physics ; Solid mechanics ; Solvents ; Structural and continuum mechanics ; Structural mechanics (beam, string...) ; Theory and numerical methods</subject><ispartof>Computational mechanics, 2001-04, Vol.27 (4), p.332-340</ispartof><rights>2001 INIST-CNRS</rights><rights>Computational Mechanics is a copyright of Springer, (2001). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-35f9b802793eb2dc718fb82e24629355fd880c4fcf0d6e9ece65df3e9dac47903</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=988213$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VERROS, G. D</creatorcontrib><creatorcontrib>MALAMATARIS, N. A</creatorcontrib><title>Finite element analysis of polymeric membrane and coating formation by solvent evaporation</title><title>Computational mechanics</title><description>The solvent evaporation process from acetone–cellulose acetate solutions is studied as a numerical experiment. The process is modeled as a coupled heat and mass transfer problem with a moving boundary. The resulting non-linear system of governing equations is solved with the Galerkin finite element method. A parametric analysis is carried out and it is discussed in detail how the process conditions affect the evaporation rate, the temperature at the surface of the solution and the resulting morphology of the final product. This analysis may be applied in the modeling of polymeric membrane formation and in the drying of coatings.</description><subject>Acetone</subject><subject>Cellulose acetate</subject><subject>Computational methods in continuum mechanics</subject><subject>Continuum mechanics (soil mechanics...)</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Galerkin method</subject><subject>Heat transfer</subject><subject>Mass transfer</subject><subject>Membranes, rods and strings</subject><subject>Morphology</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Parametric analysis</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Solvents</subject><subject>Structural and continuum mechanics</subject><subject>Structural mechanics (beam, string...)</subject><subject>Theory and numerical methods</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVUMFKxDAUDKLgunr0HvBcfUmaJjnK4qqw4EUvXkqavkiXtqlJd6F_b9cV0Xd5j3kzAzOEXDO4ZQDqLgHkRQHzcG5OyILlgmdgeH5KFsCUzlSh5Dm5SGkLwKQWckHe103fjEixxQ77kdretlNqEg2eDqGdOoyNox12VbQ9zu-aumDHpv-gPsRuvkJPq4mm0O4PetzbIcRv-JKcedsmvPrZS_K2fnhdPWWbl8fn1f0mc9ywMRPSm0oDV0ZgxWunmPaV5sjzghshpa-1Bpd756Eu0KDDQtZeoKmty5UBsSQ3R98hhs8dprHchl2cc6SS84LJOakSMys7slwMKUX05RCbzsapZFAe6iv_1ffH1SZnWz_Hd036FRmtORPiC5bZb9Q</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>VERROS, G. D</creator><creator>MALAMATARIS, N. A</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20010401</creationdate><title>Finite element analysis of polymeric membrane and coating formation by solvent evaporation</title><author>VERROS, G. D ; MALAMATARIS, N. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-35f9b802793eb2dc718fb82e24629355fd880c4fcf0d6e9ece65df3e9dac47903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Acetone</topic><topic>Cellulose acetate</topic><topic>Computational methods in continuum mechanics</topic><topic>Continuum mechanics (soil mechanics...)</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Galerkin method</topic><topic>Heat transfer</topic><topic>Mass transfer</topic><topic>Membranes, rods and strings</topic><topic>Morphology</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Parametric analysis</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Solvents</topic><topic>Structural and continuum mechanics</topic><topic>Structural mechanics (beam, string...)</topic><topic>Theory and numerical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VERROS, G. D</creatorcontrib><creatorcontrib>MALAMATARIS, N. A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VERROS, G. D</au><au>MALAMATARIS, N. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element analysis of polymeric membrane and coating formation by solvent evaporation</atitle><jtitle>Computational mechanics</jtitle><date>2001-04-01</date><risdate>2001</risdate><volume>27</volume><issue>4</issue><spage>332</spage><epage>340</epage><pages>332-340</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><coden>CMMEEE</coden><abstract>The solvent evaporation process from acetone–cellulose acetate solutions is studied as a numerical experiment. The process is modeled as a coupled heat and mass transfer problem with a moving boundary. The resulting non-linear system of governing equations is solved with the Galerkin finite element method. A parametric analysis is carried out and it is discussed in detail how the process conditions affect the evaporation rate, the temperature at the surface of the solution and the resulting morphology of the final product. This analysis may be applied in the modeling of polymeric membrane formation and in the drying of coatings.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s004660000229</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2001-04, Vol.27 (4), p.332-340
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2261515873
source SpringerLink Journals - AutoHoldings
subjects Acetone
Cellulose acetate
Computational methods in continuum mechanics
Continuum mechanics (soil mechanics...)
Evaporation
Evaporation rate
Exact sciences and technology
Finite element method
Fundamental areas of phenomenology (including applications)
Galerkin method
Heat transfer
Mass transfer
Membranes, rods and strings
Morphology
Nonlinear equations
Nonlinear systems
Parametric analysis
Physics
Solid mechanics
Solvents
Structural and continuum mechanics
Structural mechanics (beam, string...)
Theory and numerical methods
title Finite element analysis of polymeric membrane and coating formation by solvent evaporation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20analysis%20of%20polymeric%20membrane%20and%20coating%20formation%20by%20solvent%20evaporation&rft.jtitle=Computational%20mechanics&rft.au=VERROS,%20G.%20D&rft.date=2001-04-01&rft.volume=27&rft.issue=4&rft.spage=332&rft.epage=340&rft.pages=332-340&rft.issn=0178-7675&rft.eissn=1432-0924&rft.coden=CMMEEE&rft_id=info:doi/10.1007/s004660000229&rft_dat=%3Cproquest_cross%3E2261515873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261515873&rft_id=info:pmid/&rfr_iscdi=true