Nonlinear forced vibration analysis of the rectangular plates by the Fourier series method

In this paper the Fourier series method is introduced to obtain the solution for the displacement response of rectangular plates subjected to a blast loading. Applying the Fourier series method, the von Karman nonlinear equations of plates are transformed into Duffing type nonlinear ordinary differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 1999-02, Vol.23 (1), p.1-7
Hauptverfasser: TENG, T.-L, LIANG, C.-C, LIAO, C.-C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 1
container_start_page 1
container_title Computational mechanics
container_volume 23
creator TENG, T.-L
LIANG, C.-C
LIAO, C.-C
description In this paper the Fourier series method is introduced to obtain the solution for the displacement response of rectangular plates subjected to a blast loading. Applying the Fourier series method, the von Karman nonlinear equations of plates are transformed into Duffing type nonlinear ordinary differential equations and then solved by adopting the Lindstedt-Poincar'e perturbation method. The complete analysis of square plates was carried out for all-clamped edge conditions. The results of deflection history and stress resultants which uses one perturbation term sufficiently correlated with results coming from both related literature as well as the finite element method.
doi_str_mv 10.1007/s004660050380
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261514040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261514040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-54bae843744db0a37ce8bb558f838baf7fd48fb70a0cf7e60e5d139c950e09f73</originalsourceid><addsrcrecordid>eNpVkEFLAzEUhIMoWKtH7wG9rr5skk32KMWqUPSiFy9Lkn2xW7abmqRC_72rLYinOcw3wzCEXDK4YQDqNgGIqgKQwDUckQkTvCygLsUxmQBTulCVkqfkLKUVAJOaywl5fw5D3w1oIvUhOmzpV2ejyV0YqBlMv0tdosHTvEQa0WUzfGz7Ed70JmOidvfrzMM2dhhpwlESXWNehvacnHjTJ7w46JS8ze9fZ4_F4uXhaXa3KFxZl7mQwhrUgishWguGK4faWim111xb45VvhfZWgQHnFVaAsmW8drUEhNorPiVX-95NDJ9bTLlZjXPG7akpy4pJJkDASBV7ysWQUkTfbGK3NnHXMGh-7mv-3Tfy14dWk5zpfTSD69JfSAEDVvJv0PVvnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261514040</pqid></control><display><type>article</type><title>Nonlinear forced vibration analysis of the rectangular plates by the Fourier series method</title><source>SpringerNature Journals</source><creator>TENG, T.-L ; LIANG, C.-C ; LIAO, C.-C</creator><creatorcontrib>TENG, T.-L ; LIANG, C.-C ; LIAO, C.-C</creatorcontrib><description>In this paper the Fourier series method is introduced to obtain the solution for the displacement response of rectangular plates subjected to a blast loading. Applying the Fourier series method, the von Karman nonlinear equations of plates are transformed into Duffing type nonlinear ordinary differential equations and then solved by adopting the Lindstedt-Poincar'e perturbation method. The complete analysis of square plates was carried out for all-clamped edge conditions. The results of deflection history and stress resultants which uses one perturbation term sufficiently correlated with results coming from both related literature as well as the finite element method.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s004660050380</identifier><identifier>CODEN: CMMEEE</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Blast loads ; Exact sciences and technology ; Finite element method ; Forced vibration ; Fourier series ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Nonlinear analysis ; Nonlinear differential equations ; Nonlinear equations ; Ordinary differential equations ; Perturbation methods ; Physics ; Rectangular plates ; Resultants ; Solid mechanics ; Square plates ; Structural and continuum mechanics ; Vibration analysis ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>Computational mechanics, 1999-02, Vol.23 (1), p.1-7</ispartof><rights>1999 INIST-CNRS</rights><rights>Computational Mechanics is a copyright of Springer, (1999). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-54bae843744db0a37ce8bb558f838baf7fd48fb70a0cf7e60e5d139c950e09f73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1701012$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>TENG, T.-L</creatorcontrib><creatorcontrib>LIANG, C.-C</creatorcontrib><creatorcontrib>LIAO, C.-C</creatorcontrib><title>Nonlinear forced vibration analysis of the rectangular plates by the Fourier series method</title><title>Computational mechanics</title><description>In this paper the Fourier series method is introduced to obtain the solution for the displacement response of rectangular plates subjected to a blast loading. Applying the Fourier series method, the von Karman nonlinear equations of plates are transformed into Duffing type nonlinear ordinary differential equations and then solved by adopting the Lindstedt-Poincar'e perturbation method. The complete analysis of square plates was carried out for all-clamped edge conditions. The results of deflection history and stress resultants which uses one perturbation term sufficiently correlated with results coming from both related literature as well as the finite element method.</description><subject>Blast loads</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Forced vibration</subject><subject>Fourier series</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Nonlinear analysis</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Perturbation methods</subject><subject>Physics</subject><subject>Rectangular plates</subject><subject>Resultants</subject><subject>Solid mechanics</subject><subject>Square plates</subject><subject>Structural and continuum mechanics</subject><subject>Vibration analysis</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkEFLAzEUhIMoWKtH7wG9rr5skk32KMWqUPSiFy9Lkn2xW7abmqRC_72rLYinOcw3wzCEXDK4YQDqNgGIqgKQwDUckQkTvCygLsUxmQBTulCVkqfkLKUVAJOaywl5fw5D3w1oIvUhOmzpV2ejyV0YqBlMv0tdosHTvEQa0WUzfGz7Ed70JmOidvfrzMM2dhhpwlESXWNehvacnHjTJ7w46JS8ze9fZ4_F4uXhaXa3KFxZl7mQwhrUgishWguGK4faWim111xb45VvhfZWgQHnFVaAsmW8drUEhNorPiVX-95NDJ9bTLlZjXPG7akpy4pJJkDASBV7ysWQUkTfbGK3NnHXMGh-7mv-3Tfy14dWk5zpfTSD69JfSAEDVvJv0PVvnQ</recordid><startdate>19990201</startdate><enddate>19990201</enddate><creator>TENG, T.-L</creator><creator>LIANG, C.-C</creator><creator>LIAO, C.-C</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>19990201</creationdate><title>Nonlinear forced vibration analysis of the rectangular plates by the Fourier series method</title><author>TENG, T.-L ; LIANG, C.-C ; LIAO, C.-C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-54bae843744db0a37ce8bb558f838baf7fd48fb70a0cf7e60e5d139c950e09f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Blast loads</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Forced vibration</topic><topic>Fourier series</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Nonlinear analysis</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Perturbation methods</topic><topic>Physics</topic><topic>Rectangular plates</topic><topic>Resultants</topic><topic>Solid mechanics</topic><topic>Square plates</topic><topic>Structural and continuum mechanics</topic><topic>Vibration analysis</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TENG, T.-L</creatorcontrib><creatorcontrib>LIANG, C.-C</creatorcontrib><creatorcontrib>LIAO, C.-C</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TENG, T.-L</au><au>LIANG, C.-C</au><au>LIAO, C.-C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear forced vibration analysis of the rectangular plates by the Fourier series method</atitle><jtitle>Computational mechanics</jtitle><date>1999-02-01</date><risdate>1999</risdate><volume>23</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><coden>CMMEEE</coden><abstract>In this paper the Fourier series method is introduced to obtain the solution for the displacement response of rectangular plates subjected to a blast loading. Applying the Fourier series method, the von Karman nonlinear equations of plates are transformed into Duffing type nonlinear ordinary differential equations and then solved by adopting the Lindstedt-Poincar'e perturbation method. The complete analysis of square plates was carried out for all-clamped edge conditions. The results of deflection history and stress resultants which uses one perturbation term sufficiently correlated with results coming from both related literature as well as the finite element method.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s004660050380</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 1999-02, Vol.23 (1), p.1-7
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2261514040
source SpringerNature Journals
subjects Blast loads
Exact sciences and technology
Finite element method
Forced vibration
Fourier series
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Nonlinear analysis
Nonlinear differential equations
Nonlinear equations
Ordinary differential equations
Perturbation methods
Physics
Rectangular plates
Resultants
Solid mechanics
Square plates
Structural and continuum mechanics
Vibration analysis
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Vibrations and mechanical waves
title Nonlinear forced vibration analysis of the rectangular plates by the Fourier series method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A19%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20forced%20vibration%20analysis%20of%20the%20rectangular%20plates%20by%20the%20Fourier%20series%20method&rft.jtitle=Computational%20mechanics&rft.au=TENG,%20T.-L&rft.date=1999-02-01&rft.volume=23&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0178-7675&rft.eissn=1432-0924&rft.coden=CMMEEE&rft_id=info:doi/10.1007/s004660050380&rft_dat=%3Cproquest_cross%3E2261514040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261514040&rft_id=info:pmid/&rfr_iscdi=true