Cyclic crack growth in elastic plastic solids : a description in terms of dislocation theory
Whenever the plastic deformation is in the order of some Burgers vectors, it appears to be reasonable to describe crack tip plasticity by means of “mathematical” dislocations. A discrete dislocation model is presented for the simulation of mode I fatigue crack propagation. In order to take into acco...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 1997-07, Vol.20 (1-2), p.139-144 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 144 |
---|---|
container_issue | 1-2 |
container_start_page | 139 |
container_title | Computational mechanics |
container_volume | 20 |
creator | RIEMELMOSER, F. O PIPPAN, R KOLEDNIK, O |
description | Whenever the plastic deformation is in the order of some Burgers vectors, it appears to be reasonable to describe crack tip plasticity by means of “mathematical” dislocations. A discrete dislocation model is presented for the simulation of mode I fatigue crack propagation. In order to take into account the crack face contact behind the crack tip a procedure was developed which enables the computation of the dislocation motion even when crack closure occurs. |
doi_str_mv | 10.1007/s004660050230 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261513176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261513176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ae914512851a75acf72617405c271e7d416846ae468ac4270dc8ded314d3b8993</originalsourceid><addsrcrecordid>eNpVkEtLAzEUhYMoWKtL9wHdjt6b54w7Kb6g4EZ3whCTjE2dTsZkivTfO7VFcHXg8N3vwiHkHOEKAfR1BhBKAUhgHA7IBAVnBVRMHJIJoC4LrbQ8Jic5LwFQllxOyNtsY9tgqU3GftKPFL-HBQ0d9a3Jw9j3-8yxDS7TG2qo89mm0A8hdlty8GmVaWyoC7mN1vz2w8LHtDklR41psz_b55S83t-9zB6L-fPD0-x2XlhWsaEwvkIhkZUSjZbGNpop1AKkZRq9dgJVKZTxQpXGCqbB2dJ5x1E4_l5WFZ-Si523T_Fr7fNQL-M6dePLmo0qiRy1GqliR9kUc06-qfsUViZtaoR6O2D9b8CRv9xbTbambZLpbMh_R0zrSgPyH0Axbok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261513176</pqid></control><display><type>article</type><title>Cyclic crack growth in elastic plastic solids : a description in terms of dislocation theory</title><source>SpringerLink Journals</source><creator>RIEMELMOSER, F. O ; PIPPAN, R ; KOLEDNIK, O</creator><creatorcontrib>RIEMELMOSER, F. O ; PIPPAN, R ; KOLEDNIK, O</creatorcontrib><description>Whenever the plastic deformation is in the order of some Burgers vectors, it appears to be reasonable to describe crack tip plasticity by means of “mathematical” dislocations. A discrete dislocation model is presented for the simulation of mode I fatigue crack propagation. In order to take into account the crack face contact behind the crack tip a procedure was developed which enables the computation of the dislocation motion even when crack closure occurs.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s004660050230</identifier><identifier>CODEN: CMMEEE</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Computer simulation ; Condensed matter: structure, mechanical and thermal properties ; Crack closure ; Crack propagation ; Crack tips ; Dislocation models ; Exact sciences and technology ; Fatigue failure ; Fatigue, brittleness, fracture, and cracks ; Fracture mechanics ; Fracture mechanics (crack, fatigue, damage...) ; Fracture mechanics, fatigue and cracks ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Physics ; Plastic deformation ; Propagation modes ; Solid mechanics ; Structural and continuum mechanics ; Vectors (mathematics)</subject><ispartof>Computational mechanics, 1997-07, Vol.20 (1-2), p.139-144</ispartof><rights>1997 INIST-CNRS</rights><rights>Computational Mechanics is a copyright of Springer, (1997). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-ae914512851a75acf72617405c271e7d416846ae468ac4270dc8ded314d3b8993</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2779701$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>RIEMELMOSER, F. O</creatorcontrib><creatorcontrib>PIPPAN, R</creatorcontrib><creatorcontrib>KOLEDNIK, O</creatorcontrib><title>Cyclic crack growth in elastic plastic solids : a description in terms of dislocation theory</title><title>Computational mechanics</title><description>Whenever the plastic deformation is in the order of some Burgers vectors, it appears to be reasonable to describe crack tip plasticity by means of “mathematical” dislocations. A discrete dislocation model is presented for the simulation of mode I fatigue crack propagation. In order to take into account the crack face contact behind the crack tip a procedure was developed which enables the computation of the dislocation motion even when crack closure occurs.</description><subject>Computer simulation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Crack closure</subject><subject>Crack propagation</subject><subject>Crack tips</subject><subject>Dislocation models</subject><subject>Exact sciences and technology</subject><subject>Fatigue failure</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>Fracture mechanics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fracture mechanics, fatigue and cracks</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Physics</subject><subject>Plastic deformation</subject><subject>Propagation modes</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vectors (mathematics)</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkEtLAzEUhYMoWKtL9wHdjt6b54w7Kb6g4EZ3whCTjE2dTsZkivTfO7VFcHXg8N3vwiHkHOEKAfR1BhBKAUhgHA7IBAVnBVRMHJIJoC4LrbQ8Jic5LwFQllxOyNtsY9tgqU3GftKPFL-HBQ0d9a3Jw9j3-8yxDS7TG2qo89mm0A8hdlty8GmVaWyoC7mN1vz2w8LHtDklR41psz_b55S83t-9zB6L-fPD0-x2XlhWsaEwvkIhkZUSjZbGNpop1AKkZRq9dgJVKZTxQpXGCqbB2dJ5x1E4_l5WFZ-Si523T_Fr7fNQL-M6dePLmo0qiRy1GqliR9kUc06-qfsUViZtaoR6O2D9b8CRv9xbTbambZLpbMh_R0zrSgPyH0Axbok</recordid><startdate>19970701</startdate><enddate>19970701</enddate><creator>RIEMELMOSER, F. O</creator><creator>PIPPAN, R</creator><creator>KOLEDNIK, O</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19970701</creationdate><title>Cyclic crack growth in elastic plastic solids : a description in terms of dislocation theory</title><author>RIEMELMOSER, F. O ; PIPPAN, R ; KOLEDNIK, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ae914512851a75acf72617405c271e7d416846ae468ac4270dc8ded314d3b8993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Computer simulation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Crack closure</topic><topic>Crack propagation</topic><topic>Crack tips</topic><topic>Dislocation models</topic><topic>Exact sciences and technology</topic><topic>Fatigue failure</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>Fracture mechanics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fracture mechanics, fatigue and cracks</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Physics</topic><topic>Plastic deformation</topic><topic>Propagation modes</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RIEMELMOSER, F. O</creatorcontrib><creatorcontrib>PIPPAN, R</creatorcontrib><creatorcontrib>KOLEDNIK, O</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RIEMELMOSER, F. O</au><au>PIPPAN, R</au><au>KOLEDNIK, O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclic crack growth in elastic plastic solids : a description in terms of dislocation theory</atitle><jtitle>Computational mechanics</jtitle><date>1997-07-01</date><risdate>1997</risdate><volume>20</volume><issue>1-2</issue><spage>139</spage><epage>144</epage><pages>139-144</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><coden>CMMEEE</coden><abstract>Whenever the plastic deformation is in the order of some Burgers vectors, it appears to be reasonable to describe crack tip plasticity by means of “mathematical” dislocations. A discrete dislocation model is presented for the simulation of mode I fatigue crack propagation. In order to take into account the crack face contact behind the crack tip a procedure was developed which enables the computation of the dislocation motion even when crack closure occurs.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s004660050230</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 1997-07, Vol.20 (1-2), p.139-144 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_journals_2261513176 |
source | SpringerLink Journals |
subjects | Computer simulation Condensed matter: structure, mechanical and thermal properties Crack closure Crack propagation Crack tips Dislocation models Exact sciences and technology Fatigue failure Fatigue, brittleness, fracture, and cracks Fracture mechanics Fracture mechanics (crack, fatigue, damage...) Fracture mechanics, fatigue and cracks Fundamental areas of phenomenology (including applications) Mathematical analysis Mechanical and acoustical properties of condensed matter Mechanical properties of solids Physics Plastic deformation Propagation modes Solid mechanics Structural and continuum mechanics Vectors (mathematics) |
title | Cyclic crack growth in elastic plastic solids : a description in terms of dislocation theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclic%20crack%20growth%20in%20elastic%20plastic%20solids%20:%20a%20description%20in%20terms%20of%20dislocation%20theory&rft.jtitle=Computational%20mechanics&rft.au=RIEMELMOSER,%20F.%20O&rft.date=1997-07-01&rft.volume=20&rft.issue=1-2&rft.spage=139&rft.epage=144&rft.pages=139-144&rft.issn=0178-7675&rft.eissn=1432-0924&rft.coden=CMMEEE&rft_id=info:doi/10.1007/s004660050230&rft_dat=%3Cproquest_cross%3E2261513176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261513176&rft_id=info:pmid/&rfr_iscdi=true |