Cyclic crack growth in elastic plastic solids : a description in terms of dislocation theory

Whenever the plastic deformation is in the order of some Burgers vectors, it appears to be reasonable to describe crack tip plasticity by means of “mathematical” dislocations. A discrete dislocation model is presented for the simulation of mode I fatigue crack propagation. In order to take into acco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 1997-07, Vol.20 (1-2), p.139-144
Hauptverfasser: RIEMELMOSER, F. O, PIPPAN, R, KOLEDNIK, O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 1-2
container_start_page 139
container_title Computational mechanics
container_volume 20
creator RIEMELMOSER, F. O
PIPPAN, R
KOLEDNIK, O
description Whenever the plastic deformation is in the order of some Burgers vectors, it appears to be reasonable to describe crack tip plasticity by means of “mathematical” dislocations. A discrete dislocation model is presented for the simulation of mode I fatigue crack propagation. In order to take into account the crack face contact behind the crack tip a procedure was developed which enables the computation of the dislocation motion even when crack closure occurs.
doi_str_mv 10.1007/s004660050230
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261513176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261513176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ae914512851a75acf72617405c271e7d416846ae468ac4270dc8ded314d3b8993</originalsourceid><addsrcrecordid>eNpVkEtLAzEUhYMoWKtL9wHdjt6b54w7Kb6g4EZ3whCTjE2dTsZkivTfO7VFcHXg8N3vwiHkHOEKAfR1BhBKAUhgHA7IBAVnBVRMHJIJoC4LrbQ8Jic5LwFQllxOyNtsY9tgqU3GftKPFL-HBQ0d9a3Jw9j3-8yxDS7TG2qo89mm0A8hdlty8GmVaWyoC7mN1vz2w8LHtDklR41psz_b55S83t-9zB6L-fPD0-x2XlhWsaEwvkIhkZUSjZbGNpop1AKkZRq9dgJVKZTxQpXGCqbB2dJ5x1E4_l5WFZ-Si523T_Fr7fNQL-M6dePLmo0qiRy1GqliR9kUc06-qfsUViZtaoR6O2D9b8CRv9xbTbambZLpbMh_R0zrSgPyH0Axbok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261513176</pqid></control><display><type>article</type><title>Cyclic crack growth in elastic plastic solids : a description in terms of dislocation theory</title><source>SpringerLink Journals</source><creator>RIEMELMOSER, F. O ; PIPPAN, R ; KOLEDNIK, O</creator><creatorcontrib>RIEMELMOSER, F. O ; PIPPAN, R ; KOLEDNIK, O</creatorcontrib><description>Whenever the plastic deformation is in the order of some Burgers vectors, it appears to be reasonable to describe crack tip plasticity by means of “mathematical” dislocations. A discrete dislocation model is presented for the simulation of mode I fatigue crack propagation. In order to take into account the crack face contact behind the crack tip a procedure was developed which enables the computation of the dislocation motion even when crack closure occurs.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s004660050230</identifier><identifier>CODEN: CMMEEE</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Computer simulation ; Condensed matter: structure, mechanical and thermal properties ; Crack closure ; Crack propagation ; Crack tips ; Dislocation models ; Exact sciences and technology ; Fatigue failure ; Fatigue, brittleness, fracture, and cracks ; Fracture mechanics ; Fracture mechanics (crack, fatigue, damage...) ; Fracture mechanics, fatigue and cracks ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Physics ; Plastic deformation ; Propagation modes ; Solid mechanics ; Structural and continuum mechanics ; Vectors (mathematics)</subject><ispartof>Computational mechanics, 1997-07, Vol.20 (1-2), p.139-144</ispartof><rights>1997 INIST-CNRS</rights><rights>Computational Mechanics is a copyright of Springer, (1997). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-ae914512851a75acf72617405c271e7d416846ae468ac4270dc8ded314d3b8993</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2779701$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>RIEMELMOSER, F. O</creatorcontrib><creatorcontrib>PIPPAN, R</creatorcontrib><creatorcontrib>KOLEDNIK, O</creatorcontrib><title>Cyclic crack growth in elastic plastic solids : a description in terms of dislocation theory</title><title>Computational mechanics</title><description>Whenever the plastic deformation is in the order of some Burgers vectors, it appears to be reasonable to describe crack tip plasticity by means of “mathematical” dislocations. A discrete dislocation model is presented for the simulation of mode I fatigue crack propagation. In order to take into account the crack face contact behind the crack tip a procedure was developed which enables the computation of the dislocation motion even when crack closure occurs.</description><subject>Computer simulation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Crack closure</subject><subject>Crack propagation</subject><subject>Crack tips</subject><subject>Dislocation models</subject><subject>Exact sciences and technology</subject><subject>Fatigue failure</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>Fracture mechanics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fracture mechanics, fatigue and cracks</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Physics</subject><subject>Plastic deformation</subject><subject>Propagation modes</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vectors (mathematics)</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkEtLAzEUhYMoWKtL9wHdjt6b54w7Kb6g4EZ3whCTjE2dTsZkivTfO7VFcHXg8N3vwiHkHOEKAfR1BhBKAUhgHA7IBAVnBVRMHJIJoC4LrbQ8Jic5LwFQllxOyNtsY9tgqU3GftKPFL-HBQ0d9a3Jw9j3-8yxDS7TG2qo89mm0A8hdlty8GmVaWyoC7mN1vz2w8LHtDklR41psz_b55S83t-9zB6L-fPD0-x2XlhWsaEwvkIhkZUSjZbGNpop1AKkZRq9dgJVKZTxQpXGCqbB2dJ5x1E4_l5WFZ-Si523T_Fr7fNQL-M6dePLmo0qiRy1GqliR9kUc06-qfsUViZtaoR6O2D9b8CRv9xbTbambZLpbMh_R0zrSgPyH0Axbok</recordid><startdate>19970701</startdate><enddate>19970701</enddate><creator>RIEMELMOSER, F. O</creator><creator>PIPPAN, R</creator><creator>KOLEDNIK, O</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19970701</creationdate><title>Cyclic crack growth in elastic plastic solids : a description in terms of dislocation theory</title><author>RIEMELMOSER, F. O ; PIPPAN, R ; KOLEDNIK, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ae914512851a75acf72617405c271e7d416846ae468ac4270dc8ded314d3b8993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Computer simulation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Crack closure</topic><topic>Crack propagation</topic><topic>Crack tips</topic><topic>Dislocation models</topic><topic>Exact sciences and technology</topic><topic>Fatigue failure</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>Fracture mechanics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fracture mechanics, fatigue and cracks</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Physics</topic><topic>Plastic deformation</topic><topic>Propagation modes</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RIEMELMOSER, F. O</creatorcontrib><creatorcontrib>PIPPAN, R</creatorcontrib><creatorcontrib>KOLEDNIK, O</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RIEMELMOSER, F. O</au><au>PIPPAN, R</au><au>KOLEDNIK, O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclic crack growth in elastic plastic solids : a description in terms of dislocation theory</atitle><jtitle>Computational mechanics</jtitle><date>1997-07-01</date><risdate>1997</risdate><volume>20</volume><issue>1-2</issue><spage>139</spage><epage>144</epage><pages>139-144</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><coden>CMMEEE</coden><abstract>Whenever the plastic deformation is in the order of some Burgers vectors, it appears to be reasonable to describe crack tip plasticity by means of “mathematical” dislocations. A discrete dislocation model is presented for the simulation of mode I fatigue crack propagation. In order to take into account the crack face contact behind the crack tip a procedure was developed which enables the computation of the dislocation motion even when crack closure occurs.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s004660050230</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 1997-07, Vol.20 (1-2), p.139-144
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2261513176
source SpringerLink Journals
subjects Computer simulation
Condensed matter: structure, mechanical and thermal properties
Crack closure
Crack propagation
Crack tips
Dislocation models
Exact sciences and technology
Fatigue failure
Fatigue, brittleness, fracture, and cracks
Fracture mechanics
Fracture mechanics (crack, fatigue, damage...)
Fracture mechanics, fatigue and cracks
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Physics
Plastic deformation
Propagation modes
Solid mechanics
Structural and continuum mechanics
Vectors (mathematics)
title Cyclic crack growth in elastic plastic solids : a description in terms of dislocation theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclic%20crack%20growth%20in%20elastic%20plastic%20solids%20:%20a%20description%20in%20terms%20of%20dislocation%20theory&rft.jtitle=Computational%20mechanics&rft.au=RIEMELMOSER,%20F.%20O&rft.date=1997-07-01&rft.volume=20&rft.issue=1-2&rft.spage=139&rft.epage=144&rft.pages=139-144&rft.issn=0178-7675&rft.eissn=1432-0924&rft.coden=CMMEEE&rft_id=info:doi/10.1007/s004660050230&rft_dat=%3Cproquest_cross%3E2261513176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261513176&rft_id=info:pmid/&rfr_iscdi=true