Non-linear beam vibration problems and simplifications in finite element models
When finite element formulations are used to study the non-linear vibration problems, some simplifications, which are not consistent with the governing variational principles, are commonly employed. Three such simplifications are critically reviewed here, through beam finite element models. The firs...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2005-04, Vol.35 (5), p.352-360 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 360 |
---|---|
container_issue | 5 |
container_start_page | 352 |
container_title | Computational mechanics |
container_volume | 35 |
creator | Marur, S. R. Prathap, G. |
description | When finite element formulations are used to study the non-linear vibration problems, some simplifications, which are not consistent with the governing variational principles, are commonly employed. Three such simplifications are critically reviewed here, through beam finite element models. The first one, ‘equivalent/ quasi-linearisation technique’ is shown to have a reduced non-linear stiffness. The second, where in ‘neglect of in plane displacements’ takes place, is seen to register an excessive non-linear stiffness. Thirdly, when both these simplifications are introduced together, they produce results closer to those of variationally correct ones,rather fortuitously. The objective of this paper is to highlight the necessity of formulating this class of problems in a variationally correct and consistent manner. Numerical computations are performed systematically, using two different beam finite element models for various commonly studied boundary conditions and suitable conclusions are drawn. |
doi_str_mv | 10.1007/s00466-004-0622-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261509664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261509664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-a1c288a6054a3f8de378ea186f7227f5a79b3bb53cffbfbe3b6c3d11b130af8a3</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMoWFd_gLeA5-gkaT56lMUvWNyLnkPSJpClTWvSFfz3dq2Xdw7z8M7wIHRL4Z4CqIcCUEtJliQgGSPNGapozRmBhtXnqAKqNFFSiUt0VcoBgArNRYX272MifUzeZuy8HfB3dNnOcUx4yqPr_VCwTR0ucZj6GGL7tys4JhxiirPHfmF8mvEwdr4v1-gi2L74m_-5QZ_PTx_bV7Lbv7xtH3ekZYrPxNKWaW0liNryoDvPlfaWahkUYyoIqxrHnRO8DcEF57mTLe8odZSDDdryDbpbe5cvv46-zOYwHnNaThrGJBXQSFkvFF2pNo-lZB_MlONg84-hYE7ezOrNLGlO3kzDfwFkOWGF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261509664</pqid></control><display><type>article</type><title>Non-linear beam vibration problems and simplifications in finite element models</title><source>SpringerLink Journals</source><creator>Marur, S. R. ; Prathap, G.</creator><creatorcontrib>Marur, S. R. ; Prathap, G.</creatorcontrib><description>When finite element formulations are used to study the non-linear vibration problems, some simplifications, which are not consistent with the governing variational principles, are commonly employed. Three such simplifications are critically reviewed here, through beam finite element models. The first one, ‘equivalent/ quasi-linearisation technique’ is shown to have a reduced non-linear stiffness. The second, where in ‘neglect of in plane displacements’ takes place, is seen to register an excessive non-linear stiffness. Thirdly, when both these simplifications are introduced together, they produce results closer to those of variationally correct ones,rather fortuitously. The objective of this paper is to highlight the necessity of formulating this class of problems in a variationally correct and consistent manner. Numerical computations are performed systematically, using two different beam finite element models for various commonly studied boundary conditions and suitable conclusions are drawn.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-004-0622-9</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Boundary conditions ; Finite element method ; Formulations ; Linear vibration ; Linearization ; Mathematical analysis ; Mathematical models ; Nonlinear programming ; Stiffness ; Variational principles ; Vibration control</subject><ispartof>Computational mechanics, 2005-04, Vol.35 (5), p.352-360</ispartof><rights>Computational Mechanics is a copyright of Springer, (2004). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-a1c288a6054a3f8de378ea186f7227f5a79b3bb53cffbfbe3b6c3d11b130af8a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Marur, S. R.</creatorcontrib><creatorcontrib>Prathap, G.</creatorcontrib><title>Non-linear beam vibration problems and simplifications in finite element models</title><title>Computational mechanics</title><description>When finite element formulations are used to study the non-linear vibration problems, some simplifications, which are not consistent with the governing variational principles, are commonly employed. Three such simplifications are critically reviewed here, through beam finite element models. The first one, ‘equivalent/ quasi-linearisation technique’ is shown to have a reduced non-linear stiffness. The second, where in ‘neglect of in plane displacements’ takes place, is seen to register an excessive non-linear stiffness. Thirdly, when both these simplifications are introduced together, they produce results closer to those of variationally correct ones,rather fortuitously. The objective of this paper is to highlight the necessity of formulating this class of problems in a variationally correct and consistent manner. Numerical computations are performed systematically, using two different beam finite element models for various commonly studied boundary conditions and suitable conclusions are drawn.</description><subject>Boundary conditions</subject><subject>Finite element method</subject><subject>Formulations</subject><subject>Linear vibration</subject><subject>Linearization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear programming</subject><subject>Stiffness</subject><subject>Variational principles</subject><subject>Vibration control</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkE1LxDAQhoMoWFd_gLeA5-gkaT56lMUvWNyLnkPSJpClTWvSFfz3dq2Xdw7z8M7wIHRL4Z4CqIcCUEtJliQgGSPNGapozRmBhtXnqAKqNFFSiUt0VcoBgArNRYX272MifUzeZuy8HfB3dNnOcUx4yqPr_VCwTR0ucZj6GGL7tys4JhxiirPHfmF8mvEwdr4v1-gi2L74m_-5QZ_PTx_bV7Lbv7xtH3ekZYrPxNKWaW0liNryoDvPlfaWahkUYyoIqxrHnRO8DcEF57mTLe8odZSDDdryDbpbe5cvv46-zOYwHnNaThrGJBXQSFkvFF2pNo-lZB_MlONg84-hYE7ezOrNLGlO3kzDfwFkOWGF</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Marur, S. R.</creator><creator>Prathap, G.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20050401</creationdate><title>Non-linear beam vibration problems and simplifications in finite element models</title><author>Marur, S. R. ; Prathap, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-a1c288a6054a3f8de378ea186f7227f5a79b3bb53cffbfbe3b6c3d11b130af8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Boundary conditions</topic><topic>Finite element method</topic><topic>Formulations</topic><topic>Linear vibration</topic><topic>Linearization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear programming</topic><topic>Stiffness</topic><topic>Variational principles</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marur, S. R.</creatorcontrib><creatorcontrib>Prathap, G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marur, S. R.</au><au>Prathap, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-linear beam vibration problems and simplifications in finite element models</atitle><jtitle>Computational mechanics</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>35</volume><issue>5</issue><spage>352</spage><epage>360</epage><pages>352-360</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>When finite element formulations are used to study the non-linear vibration problems, some simplifications, which are not consistent with the governing variational principles, are commonly employed. Three such simplifications are critically reviewed here, through beam finite element models. The first one, ‘equivalent/ quasi-linearisation technique’ is shown to have a reduced non-linear stiffness. The second, where in ‘neglect of in plane displacements’ takes place, is seen to register an excessive non-linear stiffness. Thirdly, when both these simplifications are introduced together, they produce results closer to those of variationally correct ones,rather fortuitously. The objective of this paper is to highlight the necessity of formulating this class of problems in a variationally correct and consistent manner. Numerical computations are performed systematically, using two different beam finite element models for various commonly studied boundary conditions and suitable conclusions are drawn.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00466-004-0622-9</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2005-04, Vol.35 (5), p.352-360 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_journals_2261509664 |
source | SpringerLink Journals |
subjects | Boundary conditions Finite element method Formulations Linear vibration Linearization Mathematical analysis Mathematical models Nonlinear programming Stiffness Variational principles Vibration control |
title | Non-linear beam vibration problems and simplifications in finite element models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A15%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-linear%20beam%20vibration%20problems%20and%20simplifications%20in%20finite%20element%20models&rft.jtitle=Computational%20mechanics&rft.au=Marur,%20S.%20R.&rft.date=2005-04-01&rft.volume=35&rft.issue=5&rft.spage=352&rft.epage=360&rft.pages=352-360&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-004-0622-9&rft_dat=%3Cproquest_cross%3E2261509664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261509664&rft_id=info:pmid/&rfr_iscdi=true |