Parallel implementation of the finite element method using compressed data structures
This paper presents a parallel implementation of the finite element method designed for coarse-grain distributed memory architectures. The MPI standard is used for message passing and tests are run on a PC cluster and on an SGI Altix 350. Compressed data structures are employed to store the coeffici...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2007-12, Vol.41 (1), p.31-48 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | 1 |
container_start_page | 31 |
container_title | Computational mechanics |
container_volume | 41 |
creator | Ribeiro, F. L. B. Ferreira, I. A. |
description | This paper presents a parallel implementation of the finite element method designed for coarse-grain distributed memory architectures. The MPI standard is used for message passing and tests are run on a PC cluster and on an SGI Altix 350. Compressed data structures are employed to store the coefficient matrix and obtain iterative solutions, based on Krylov methods, in a subdomain-by-subdomain approach. Two mesh partitioning schemes are compared: non-overlapping and overlapping. The pros and cons of these partitioning methods are discussed. Numerical examples of symmetric and non-symmetric problems in two and three dimensions are presented. |
doi_str_mv | 10.1007/s00466-007-0166-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261441265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261441265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-d47413a8b80456bc9fa790de72a48bac2a0fe914f9b94de2d0b8b8214dbf32f43</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMouK7-AG8Bz9HJR5v2KIu6woIe3HNIm4nbpV8mKaz_3i71NA_zPszAS8g9h0cOoJ8igMpzNiMDPsPpgqy4koJBKdQlWQHXBdO5zq7JTYxHAJ4VMluR_acNtm2xpU03tthhn2xqhp4OnqYDUt_0TUKKS0Q7TIfB0Sk2_Teth24MGCM66myyNKYw1WmaV7fkyts24t3_XJP968vXZst2H2_vm-cdq4WWiTmlFZe2qApQWV7Vpbe6BIdaWFVUthYWPJZc-bIqlUPhoJpdwZWrvBReyTV5WO6OYfiZMCZzHKbQzy-NEDlXios8my2-WHUYYgzozRiazoZfw8Gc2zNLe-aM5_bMSf4BtTdkYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261441265</pqid></control><display><type>article</type><title>Parallel implementation of the finite element method using compressed data structures</title><source>Springer Nature - Complete Springer Journals</source><creator>Ribeiro, F. L. B. ; Ferreira, I. A.</creator><creatorcontrib>Ribeiro, F. L. B. ; Ferreira, I. A.</creatorcontrib><description>This paper presents a parallel implementation of the finite element method designed for coarse-grain distributed memory architectures. The MPI standard is used for message passing and tests are run on a PC cluster and on an SGI Altix 350. Compressed data structures are employed to store the coefficient matrix and obtain iterative solutions, based on Krylov methods, in a subdomain-by-subdomain approach. Two mesh partitioning schemes are compared: non-overlapping and overlapping. The pros and cons of these partitioning methods are discussed. Numerical examples of symmetric and non-symmetric problems in two and three dimensions are presented.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-007-0166-x</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Computer architecture ; Data structures ; Distributed memory ; Finite element analysis ; Finite element method ; Iterative methods ; Mesh partitioning ; Message passing ; Nonlinear programming ; Numerical methods ; Partitioning</subject><ispartof>Computational mechanics, 2007-12, Vol.41 (1), p.31-48</ispartof><rights>Computational Mechanics is a copyright of Springer, (2007). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-d47413a8b80456bc9fa790de72a48bac2a0fe914f9b94de2d0b8b8214dbf32f43</citedby><cites>FETCH-LOGICAL-c273t-d47413a8b80456bc9fa790de72a48bac2a0fe914f9b94de2d0b8b8214dbf32f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ribeiro, F. L. B.</creatorcontrib><creatorcontrib>Ferreira, I. A.</creatorcontrib><title>Parallel implementation of the finite element method using compressed data structures</title><title>Computational mechanics</title><description>This paper presents a parallel implementation of the finite element method designed for coarse-grain distributed memory architectures. The MPI standard is used for message passing and tests are run on a PC cluster and on an SGI Altix 350. Compressed data structures are employed to store the coefficient matrix and obtain iterative solutions, based on Krylov methods, in a subdomain-by-subdomain approach. Two mesh partitioning schemes are compared: non-overlapping and overlapping. The pros and cons of these partitioning methods are discussed. Numerical examples of symmetric and non-symmetric problems in two and three dimensions are presented.</description><subject>Computer architecture</subject><subject>Data structures</subject><subject>Distributed memory</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Iterative methods</subject><subject>Mesh partitioning</subject><subject>Message passing</subject><subject>Nonlinear programming</subject><subject>Numerical methods</subject><subject>Partitioning</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkE1LxDAQhoMouK7-AG8Bz9HJR5v2KIu6woIe3HNIm4nbpV8mKaz_3i71NA_zPszAS8g9h0cOoJ8igMpzNiMDPsPpgqy4koJBKdQlWQHXBdO5zq7JTYxHAJ4VMluR_acNtm2xpU03tthhn2xqhp4OnqYDUt_0TUKKS0Q7TIfB0Sk2_Teth24MGCM66myyNKYw1WmaV7fkyts24t3_XJP968vXZst2H2_vm-cdq4WWiTmlFZe2qApQWV7Vpbe6BIdaWFVUthYWPJZc-bIqlUPhoJpdwZWrvBReyTV5WO6OYfiZMCZzHKbQzy-NEDlXios8my2-WHUYYgzozRiazoZfw8Gc2zNLe-aM5_bMSf4BtTdkYw</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Ribeiro, F. L. B.</creator><creator>Ferreira, I. A.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20071201</creationdate><title>Parallel implementation of the finite element method using compressed data structures</title><author>Ribeiro, F. L. B. ; Ferreira, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-d47413a8b80456bc9fa790de72a48bac2a0fe914f9b94de2d0b8b8214dbf32f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computer architecture</topic><topic>Data structures</topic><topic>Distributed memory</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Iterative methods</topic><topic>Mesh partitioning</topic><topic>Message passing</topic><topic>Nonlinear programming</topic><topic>Numerical methods</topic><topic>Partitioning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribeiro, F. L. B.</creatorcontrib><creatorcontrib>Ferreira, I. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribeiro, F. L. B.</au><au>Ferreira, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel implementation of the finite element method using compressed data structures</atitle><jtitle>Computational mechanics</jtitle><date>2007-12-01</date><risdate>2007</risdate><volume>41</volume><issue>1</issue><spage>31</spage><epage>48</epage><pages>31-48</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>This paper presents a parallel implementation of the finite element method designed for coarse-grain distributed memory architectures. The MPI standard is used for message passing and tests are run on a PC cluster and on an SGI Altix 350. Compressed data structures are employed to store the coefficient matrix and obtain iterative solutions, based on Krylov methods, in a subdomain-by-subdomain approach. Two mesh partitioning schemes are compared: non-overlapping and overlapping. The pros and cons of these partitioning methods are discussed. Numerical examples of symmetric and non-symmetric problems in two and three dimensions are presented.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00466-007-0166-x</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2007-12, Vol.41 (1), p.31-48 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_journals_2261441265 |
source | Springer Nature - Complete Springer Journals |
subjects | Computer architecture Data structures Distributed memory Finite element analysis Finite element method Iterative methods Mesh partitioning Message passing Nonlinear programming Numerical methods Partitioning |
title | Parallel implementation of the finite element method using compressed data structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20implementation%20of%20the%20finite%20element%20method%20using%20compressed%20data%20structures&rft.jtitle=Computational%20mechanics&rft.au=Ribeiro,%20F.%20L.%20B.&rft.date=2007-12-01&rft.volume=41&rft.issue=1&rft.spage=31&rft.epage=48&rft.pages=31-48&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-007-0166-x&rft_dat=%3Cproquest_cross%3E2261441265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261441265&rft_id=info:pmid/&rfr_iscdi=true |