Parallel implementation of the finite element method using compressed data structures

This paper presents a parallel implementation of the finite element method designed for coarse-grain distributed memory architectures. The MPI standard is used for message passing and tests are run on a PC cluster and on an SGI Altix 350. Compressed data structures are employed to store the coeffici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2007-12, Vol.41 (1), p.31-48
Hauptverfasser: Ribeiro, F. L. B., Ferreira, I. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 31
container_title Computational mechanics
container_volume 41
creator Ribeiro, F. L. B.
Ferreira, I. A.
description This paper presents a parallel implementation of the finite element method designed for coarse-grain distributed memory architectures. The MPI standard is used for message passing and tests are run on a PC cluster and on an SGI Altix 350. Compressed data structures are employed to store the coefficient matrix and obtain iterative solutions, based on Krylov methods, in a subdomain-by-subdomain approach. Two mesh partitioning schemes are compared: non-overlapping and overlapping. The pros and cons of these partitioning methods are discussed. Numerical examples of symmetric and non-symmetric problems in two and three dimensions are presented.
doi_str_mv 10.1007/s00466-007-0166-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261441265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261441265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-d47413a8b80456bc9fa790de72a48bac2a0fe914f9b94de2d0b8b8214dbf32f43</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMouK7-AG8Bz9HJR5v2KIu6woIe3HNIm4nbpV8mKaz_3i71NA_zPszAS8g9h0cOoJ8igMpzNiMDPsPpgqy4koJBKdQlWQHXBdO5zq7JTYxHAJ4VMluR_acNtm2xpU03tthhn2xqhp4OnqYDUt_0TUKKS0Q7TIfB0Sk2_Teth24MGCM66myyNKYw1WmaV7fkyts24t3_XJP968vXZst2H2_vm-cdq4WWiTmlFZe2qApQWV7Vpbe6BIdaWFVUthYWPJZc-bIqlUPhoJpdwZWrvBReyTV5WO6OYfiZMCZzHKbQzy-NEDlXios8my2-WHUYYgzozRiazoZfw8Gc2zNLe-aM5_bMSf4BtTdkYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261441265</pqid></control><display><type>article</type><title>Parallel implementation of the finite element method using compressed data structures</title><source>Springer Nature - Complete Springer Journals</source><creator>Ribeiro, F. L. B. ; Ferreira, I. A.</creator><creatorcontrib>Ribeiro, F. L. B. ; Ferreira, I. A.</creatorcontrib><description>This paper presents a parallel implementation of the finite element method designed for coarse-grain distributed memory architectures. The MPI standard is used for message passing and tests are run on a PC cluster and on an SGI Altix 350. Compressed data structures are employed to store the coefficient matrix and obtain iterative solutions, based on Krylov methods, in a subdomain-by-subdomain approach. Two mesh partitioning schemes are compared: non-overlapping and overlapping. The pros and cons of these partitioning methods are discussed. Numerical examples of symmetric and non-symmetric problems in two and three dimensions are presented.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-007-0166-x</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Computer architecture ; Data structures ; Distributed memory ; Finite element analysis ; Finite element method ; Iterative methods ; Mesh partitioning ; Message passing ; Nonlinear programming ; Numerical methods ; Partitioning</subject><ispartof>Computational mechanics, 2007-12, Vol.41 (1), p.31-48</ispartof><rights>Computational Mechanics is a copyright of Springer, (2007). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-d47413a8b80456bc9fa790de72a48bac2a0fe914f9b94de2d0b8b8214dbf32f43</citedby><cites>FETCH-LOGICAL-c273t-d47413a8b80456bc9fa790de72a48bac2a0fe914f9b94de2d0b8b8214dbf32f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ribeiro, F. L. B.</creatorcontrib><creatorcontrib>Ferreira, I. A.</creatorcontrib><title>Parallel implementation of the finite element method using compressed data structures</title><title>Computational mechanics</title><description>This paper presents a parallel implementation of the finite element method designed for coarse-grain distributed memory architectures. The MPI standard is used for message passing and tests are run on a PC cluster and on an SGI Altix 350. Compressed data structures are employed to store the coefficient matrix and obtain iterative solutions, based on Krylov methods, in a subdomain-by-subdomain approach. Two mesh partitioning schemes are compared: non-overlapping and overlapping. The pros and cons of these partitioning methods are discussed. Numerical examples of symmetric and non-symmetric problems in two and three dimensions are presented.</description><subject>Computer architecture</subject><subject>Data structures</subject><subject>Distributed memory</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Iterative methods</subject><subject>Mesh partitioning</subject><subject>Message passing</subject><subject>Nonlinear programming</subject><subject>Numerical methods</subject><subject>Partitioning</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkE1LxDAQhoMouK7-AG8Bz9HJR5v2KIu6woIe3HNIm4nbpV8mKaz_3i71NA_zPszAS8g9h0cOoJ8igMpzNiMDPsPpgqy4koJBKdQlWQHXBdO5zq7JTYxHAJ4VMluR_acNtm2xpU03tthhn2xqhp4OnqYDUt_0TUKKS0Q7TIfB0Sk2_Teth24MGCM66myyNKYw1WmaV7fkyts24t3_XJP968vXZst2H2_vm-cdq4WWiTmlFZe2qApQWV7Vpbe6BIdaWFVUthYWPJZc-bIqlUPhoJpdwZWrvBReyTV5WO6OYfiZMCZzHKbQzy-NEDlXios8my2-WHUYYgzozRiazoZfw8Gc2zNLe-aM5_bMSf4BtTdkYw</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Ribeiro, F. L. B.</creator><creator>Ferreira, I. A.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20071201</creationdate><title>Parallel implementation of the finite element method using compressed data structures</title><author>Ribeiro, F. L. B. ; Ferreira, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-d47413a8b80456bc9fa790de72a48bac2a0fe914f9b94de2d0b8b8214dbf32f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computer architecture</topic><topic>Data structures</topic><topic>Distributed memory</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Iterative methods</topic><topic>Mesh partitioning</topic><topic>Message passing</topic><topic>Nonlinear programming</topic><topic>Numerical methods</topic><topic>Partitioning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribeiro, F. L. B.</creatorcontrib><creatorcontrib>Ferreira, I. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribeiro, F. L. B.</au><au>Ferreira, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel implementation of the finite element method using compressed data structures</atitle><jtitle>Computational mechanics</jtitle><date>2007-12-01</date><risdate>2007</risdate><volume>41</volume><issue>1</issue><spage>31</spage><epage>48</epage><pages>31-48</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>This paper presents a parallel implementation of the finite element method designed for coarse-grain distributed memory architectures. The MPI standard is used for message passing and tests are run on a PC cluster and on an SGI Altix 350. Compressed data structures are employed to store the coefficient matrix and obtain iterative solutions, based on Krylov methods, in a subdomain-by-subdomain approach. Two mesh partitioning schemes are compared: non-overlapping and overlapping. The pros and cons of these partitioning methods are discussed. Numerical examples of symmetric and non-symmetric problems in two and three dimensions are presented.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00466-007-0166-x</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2007-12, Vol.41 (1), p.31-48
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2261441265
source Springer Nature - Complete Springer Journals
subjects Computer architecture
Data structures
Distributed memory
Finite element analysis
Finite element method
Iterative methods
Mesh partitioning
Message passing
Nonlinear programming
Numerical methods
Partitioning
title Parallel implementation of the finite element method using compressed data structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20implementation%20of%20the%20finite%20element%20method%20using%20compressed%20data%20structures&rft.jtitle=Computational%20mechanics&rft.au=Ribeiro,%20F.%20L.%20B.&rft.date=2007-12-01&rft.volume=41&rft.issue=1&rft.spage=31&rft.epage=48&rft.pages=31-48&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-007-0166-x&rft_dat=%3Cproquest_cross%3E2261441265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261441265&rft_id=info:pmid/&rfr_iscdi=true