Frictionless 2D Contact formulations for finite deformations based on the mortar method

In this paper two different finite element formulations for frictionless large deformation contact problems with non-matching meshes are presented. Both are based on the mortar method. The first formulation introduces the contact constraints via Lagrange multipliers, the other employs the penalty me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2005-08, Vol.36 (3), p.226-244
Hauptverfasser: Fischer, K. A., Wriggers, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244
container_issue 3
container_start_page 226
container_title Computational mechanics
container_volume 36
creator Fischer, K. A.
Wriggers, P.
description In this paper two different finite element formulations for frictionless large deformation contact problems with non-matching meshes are presented. Both are based on the mortar method. The first formulation introduces the contact constraints via Lagrange multipliers, the other employs the penalty method. Both formulations differ in size and the way of fulfilling the contact constraints, thus different strategies to determine the permanently changing contact area are required. Starting from the contact potential energy, the variational formulation, the linearization and finally the matrix formulation of both methods are derived. In combination with different contact detection methods the global solution algorithm is applied to different two-dimensional examples.
doi_str_mv 10.1007/s00466-005-0660-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261437106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261437106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-fd9b54d14edf600095b5d56e71ddc4ec1752b6cb06ea03541d3f281368c9d0ba3</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKs_wF3AdfTmPbOU-oSCG8VlyORBp3QmNUkX_ffO0K4u557DOfAhdE_hkQLopwIglCIAkoBSQI4XaEEFZwRaJi7RAqhuiFZaXqObUrYAVDZcLtDvW-5d7dO4C6Vg9oJXaazWVRxTHg47O1tlFjj2Y18D9mF2zv_OluBxGnHdBDykXG3GQ6ib5G_RVbS7Eu7Od4l-3l6_Vx9k_fX-uXpeE8d5W0n0bSeFpyL4qACglZ30UgVNvXciOKol65TrQAULXArqeWQN5apxrYfO8iV6OPXuc_o7hFLNNh3yOE0axtREQFNQU4qeUi6nUnKIZp_7weajoWBmfubEz0z8zMzPHPk__E5kOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261437106</pqid></control><display><type>article</type><title>Frictionless 2D Contact formulations for finite deformations based on the mortar method</title><source>Springer Online Journals Complete</source><creator>Fischer, K. A. ; Wriggers, P.</creator><creatorcontrib>Fischer, K. A. ; Wriggers, P.</creatorcontrib><description>In this paper two different finite element formulations for frictionless large deformation contact problems with non-matching meshes are presented. Both are based on the mortar method. The first formulation introduces the contact constraints via Lagrange multipliers, the other employs the penalty method. Both formulations differ in size and the way of fulfilling the contact constraints, thus different strategies to determine the permanently changing contact area are required. Starting from the contact potential energy, the variational formulation, the linearization and finally the matrix formulation of both methods are derived. In combination with different contact detection methods the global solution algorithm is applied to different two-dimensional examples.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-005-0660-y</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Algorithms ; Contact potentials ; Deformation ; Finite element method ; Formulations ; Lagrange multiplier ; Mortars (material) ; Potential energy</subject><ispartof>Computational mechanics, 2005-08, Vol.36 (3), p.226-244</ispartof><rights>Computational Mechanics is a copyright of Springer, (2005). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-fd9b54d14edf600095b5d56e71ddc4ec1752b6cb06ea03541d3f281368c9d0ba3</citedby><cites>FETCH-LOGICAL-c339t-fd9b54d14edf600095b5d56e71ddc4ec1752b6cb06ea03541d3f281368c9d0ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><creatorcontrib>Fischer, K. A.</creatorcontrib><creatorcontrib>Wriggers, P.</creatorcontrib><title>Frictionless 2D Contact formulations for finite deformations based on the mortar method</title><title>Computational mechanics</title><description>In this paper two different finite element formulations for frictionless large deformation contact problems with non-matching meshes are presented. Both are based on the mortar method. The first formulation introduces the contact constraints via Lagrange multipliers, the other employs the penalty method. Both formulations differ in size and the way of fulfilling the contact constraints, thus different strategies to determine the permanently changing contact area are required. Starting from the contact potential energy, the variational formulation, the linearization and finally the matrix formulation of both methods are derived. In combination with different contact detection methods the global solution algorithm is applied to different two-dimensional examples.</description><subject>Algorithms</subject><subject>Contact potentials</subject><subject>Deformation</subject><subject>Finite element method</subject><subject>Formulations</subject><subject>Lagrange multiplier</subject><subject>Mortars (material)</subject><subject>Potential energy</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkEtLAzEUhYMoWKs_wF3AdfTmPbOU-oSCG8VlyORBp3QmNUkX_ffO0K4u557DOfAhdE_hkQLopwIglCIAkoBSQI4XaEEFZwRaJi7RAqhuiFZaXqObUrYAVDZcLtDvW-5d7dO4C6Vg9oJXaazWVRxTHg47O1tlFjj2Y18D9mF2zv_OluBxGnHdBDykXG3GQ6ib5G_RVbS7Eu7Od4l-3l6_Vx9k_fX-uXpeE8d5W0n0bSeFpyL4qACglZ30UgVNvXciOKol65TrQAULXArqeWQN5apxrYfO8iV6OPXuc_o7hFLNNh3yOE0axtREQFNQU4qeUi6nUnKIZp_7weajoWBmfubEz0z8zMzPHPk__E5kOA</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Fischer, K. A.</creator><creator>Wriggers, P.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20050801</creationdate><title>Frictionless 2D Contact formulations for finite deformations based on the mortar method</title><author>Fischer, K. A. ; Wriggers, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-fd9b54d14edf600095b5d56e71ddc4ec1752b6cb06ea03541d3f281368c9d0ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Contact potentials</topic><topic>Deformation</topic><topic>Finite element method</topic><topic>Formulations</topic><topic>Lagrange multiplier</topic><topic>Mortars (material)</topic><topic>Potential energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fischer, K. A.</creatorcontrib><creatorcontrib>Wriggers, P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischer, K. A.</au><au>Wriggers, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frictionless 2D Contact formulations for finite deformations based on the mortar method</atitle><jtitle>Computational mechanics</jtitle><date>2005-08-01</date><risdate>2005</risdate><volume>36</volume><issue>3</issue><spage>226</spage><epage>244</epage><pages>226-244</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>In this paper two different finite element formulations for frictionless large deformation contact problems with non-matching meshes are presented. Both are based on the mortar method. The first formulation introduces the contact constraints via Lagrange multipliers, the other employs the penalty method. Both formulations differ in size and the way of fulfilling the contact constraints, thus different strategies to determine the permanently changing contact area are required. Starting from the contact potential energy, the variational formulation, the linearization and finally the matrix formulation of both methods are derived. In combination with different contact detection methods the global solution algorithm is applied to different two-dimensional examples.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00466-005-0660-y</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2005-08, Vol.36 (3), p.226-244
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2261437106
source Springer Online Journals Complete
subjects Algorithms
Contact potentials
Deformation
Finite element method
Formulations
Lagrange multiplier
Mortars (material)
Potential energy
title Frictionless 2D Contact formulations for finite deformations based on the mortar method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frictionless%202D%20Contact%20formulations%20for%20finite%20deformations%20based%20on%20the%20mortar%20method&rft.jtitle=Computational%20mechanics&rft.au=Fischer,%20K.%20A.&rft.date=2005-08-01&rft.volume=36&rft.issue=3&rft.spage=226&rft.epage=244&rft.pages=226-244&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-005-0660-y&rft_dat=%3Cproquest_cross%3E2261437106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261437106&rft_id=info:pmid/&rfr_iscdi=true