Effect of electrode pore geometry modeled using Nernst–Planck–Poisson-modified Stern layer model

A planar electrode containing cylindrical pores with semi-circular ends is modeled using a finite element implementation of the transient nonlinear 2D Nernst– Planck–Poisson-modified Stern (NPPMS) model. The model uses a modified Stern layer to account for finite ion size. The study includes the eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2009-03, Vol.43 (4), p.461-475
Hauptverfasser: Lim, Jongil, Whitcomb, John D., Boyd, James G., Varghese, Julian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 475
container_issue 4
container_start_page 461
container_title Computational mechanics
container_volume 43
creator Lim, Jongil
Whitcomb, John D.
Boyd, James G.
Varghese, Julian
description A planar electrode containing cylindrical pores with semi-circular ends is modeled using a finite element implementation of the transient nonlinear 2D Nernst– Planck–Poisson-modified Stern (NPPMS) model. The model uses a modified Stern layer to account for finite ion size. The study includes the effects of pore radius and depth on the predicted electric potential, ion concentration, surface charge density, surface energy density, and charging time. The ion concentration and electric potential are found to be sensitive to the change in radii of the pore and insensitive to the pore depth. The surface charge density is slightly higher within the pore than along the vertical flat regions of the electrode. The increase in surface area due to porosity increases the charging time.
doi_str_mv 10.1007/s00466-008-0322-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261308570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261308570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4e710e39fd1c9f0f0c0983f30d642068bf6aba0de02d17cdfe4476f22171dc6a3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWC8P4C7gOnqSzCTTpZR6gaKCug7T5KRMnU5qMl3MznfwDX0SU0Zw5er8HL7_HPgIueBwxQH0dQIolGIAFQMpBBsOyIQXUjCYiuKQTIDrimmly2NyktIagJeVLCfEzb1H29PgKbY5xOCQbkNEusKwwT4OdJNXLTq6S023oo8Yu9R_f349t3Vn3_chNCmFjmWu8U0GX_rM0LYeMI7lM3Lk6zbh-e88JW-389fZPVs83T3MbhbMSq56VqDmgHLqHbdTDx4sTCvpJThVCFDV0qt6WYNDEI5r6zwWhVZeCK65s6qWp-RyvLuN4WOHqTfrsItdfmmEUFxCVWrIFB8pG0NKEb3ZxmZTx8FwMHuZZpRpskyzl2mG3BFjJ2W2W2H8u_x_6Qe6t3r2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261308570</pqid></control><display><type>article</type><title>Effect of electrode pore geometry modeled using Nernst–Planck–Poisson-modified Stern layer model</title><source>Springer Nature - Complete Springer Journals</source><creator>Lim, Jongil ; Whitcomb, John D. ; Boyd, James G. ; Varghese, Julian</creator><creatorcontrib>Lim, Jongil ; Whitcomb, John D. ; Boyd, James G. ; Varghese, Julian</creatorcontrib><description>A planar electrode containing cylindrical pores with semi-circular ends is modeled using a finite element implementation of the transient nonlinear 2D Nernst– Planck–Poisson-modified Stern (NPPMS) model. The model uses a modified Stern layer to account for finite ion size. The study includes the effects of pore radius and depth on the predicted electric potential, ion concentration, surface charge density, surface energy density, and charging time. The ion concentration and electric potential are found to be sensitive to the change in radii of the pore and insensitive to the pore depth. The surface charge density is slightly higher within the pore than along the vertical flat regions of the electrode. The increase in surface area due to porosity increases the charging time.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-008-0322-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Charge density ; Charging ; Classical and Continuum Physics ; Computational Science and Engineering ; Electric potential ; Electrodes ; Engineering ; Finite element method ; Flux density ; Ion concentration ; Original Paper ; Porosity ; Surface charge ; Surface energy ; Theoretical and Applied Mechanics ; Two dimensional models</subject><ispartof>Computational mechanics, 2009-03, Vol.43 (4), p.461-475</ispartof><rights>Springer-Verlag 2008</rights><rights>Computational Mechanics is a copyright of Springer, (2008). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4e710e39fd1c9f0f0c0983f30d642068bf6aba0de02d17cdfe4476f22171dc6a3</citedby><cites>FETCH-LOGICAL-c316t-4e710e39fd1c9f0f0c0983f30d642068bf6aba0de02d17cdfe4476f22171dc6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-008-0322-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-008-0322-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lim, Jongil</creatorcontrib><creatorcontrib>Whitcomb, John D.</creatorcontrib><creatorcontrib>Boyd, James G.</creatorcontrib><creatorcontrib>Varghese, Julian</creatorcontrib><title>Effect of electrode pore geometry modeled using Nernst–Planck–Poisson-modified Stern layer model</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>A planar electrode containing cylindrical pores with semi-circular ends is modeled using a finite element implementation of the transient nonlinear 2D Nernst– Planck–Poisson-modified Stern (NPPMS) model. The model uses a modified Stern layer to account for finite ion size. The study includes the effects of pore radius and depth on the predicted electric potential, ion concentration, surface charge density, surface energy density, and charging time. The ion concentration and electric potential are found to be sensitive to the change in radii of the pore and insensitive to the pore depth. The surface charge density is slightly higher within the pore than along the vertical flat regions of the electrode. The increase in surface area due to porosity increases the charging time.</description><subject>Charge density</subject><subject>Charging</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Flux density</subject><subject>Ion concentration</subject><subject>Original Paper</subject><subject>Porosity</subject><subject>Surface charge</subject><subject>Surface energy</subject><subject>Theoretical and Applied Mechanics</subject><subject>Two dimensional models</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtKAzEUhoMoWC8P4C7gOnqSzCTTpZR6gaKCug7T5KRMnU5qMl3MznfwDX0SU0Zw5er8HL7_HPgIueBwxQH0dQIolGIAFQMpBBsOyIQXUjCYiuKQTIDrimmly2NyktIagJeVLCfEzb1H29PgKbY5xOCQbkNEusKwwT4OdJNXLTq6S023oo8Yu9R_f349t3Vn3_chNCmFjmWu8U0GX_rM0LYeMI7lM3Lk6zbh-e88JW-389fZPVs83T3MbhbMSq56VqDmgHLqHbdTDx4sTCvpJThVCFDV0qt6WYNDEI5r6zwWhVZeCK65s6qWp-RyvLuN4WOHqTfrsItdfmmEUFxCVWrIFB8pG0NKEb3ZxmZTx8FwMHuZZpRpskyzl2mG3BFjJ2W2W2H8u_x_6Qe6t3r2</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Lim, Jongil</creator><creator>Whitcomb, John D.</creator><creator>Boyd, James G.</creator><creator>Varghese, Julian</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20090301</creationdate><title>Effect of electrode pore geometry modeled using Nernst–Planck–Poisson-modified Stern layer model</title><author>Lim, Jongil ; Whitcomb, John D. ; Boyd, James G. ; Varghese, Julian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4e710e39fd1c9f0f0c0983f30d642068bf6aba0de02d17cdfe4476f22171dc6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Charge density</topic><topic>Charging</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Flux density</topic><topic>Ion concentration</topic><topic>Original Paper</topic><topic>Porosity</topic><topic>Surface charge</topic><topic>Surface energy</topic><topic>Theoretical and Applied Mechanics</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Jongil</creatorcontrib><creatorcontrib>Whitcomb, John D.</creatorcontrib><creatorcontrib>Boyd, James G.</creatorcontrib><creatorcontrib>Varghese, Julian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Jongil</au><au>Whitcomb, John D.</au><au>Boyd, James G.</au><au>Varghese, Julian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of electrode pore geometry modeled using Nernst–Planck–Poisson-modified Stern layer model</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>43</volume><issue>4</issue><spage>461</spage><epage>475</epage><pages>461-475</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>A planar electrode containing cylindrical pores with semi-circular ends is modeled using a finite element implementation of the transient nonlinear 2D Nernst– Planck–Poisson-modified Stern (NPPMS) model. The model uses a modified Stern layer to account for finite ion size. The study includes the effects of pore radius and depth on the predicted electric potential, ion concentration, surface charge density, surface energy density, and charging time. The ion concentration and electric potential are found to be sensitive to the change in radii of the pore and insensitive to the pore depth. The surface charge density is slightly higher within the pore than along the vertical flat regions of the electrode. The increase in surface area due to porosity increases the charging time.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00466-008-0322-y</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2009-03, Vol.43 (4), p.461-475
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2261308570
source Springer Nature - Complete Springer Journals
subjects Charge density
Charging
Classical and Continuum Physics
Computational Science and Engineering
Electric potential
Electrodes
Engineering
Finite element method
Flux density
Ion concentration
Original Paper
Porosity
Surface charge
Surface energy
Theoretical and Applied Mechanics
Two dimensional models
title Effect of electrode pore geometry modeled using Nernst–Planck–Poisson-modified Stern layer model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T13%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20electrode%20pore%20geometry%20modeled%20using%20Nernst%E2%80%93Planck%E2%80%93Poisson-modified%20Stern%20layer%20model&rft.jtitle=Computational%20mechanics&rft.au=Lim,%20Jongil&rft.date=2009-03-01&rft.volume=43&rft.issue=4&rft.spage=461&rft.epage=475&rft.pages=461-475&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-008-0322-y&rft_dat=%3Cproquest_cross%3E2261308570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261308570&rft_id=info:pmid/&rfr_iscdi=true