Effect of electrode pore geometry modeled using Nernst–Planck–Poisson-modified Stern layer model
A planar electrode containing cylindrical pores with semi-circular ends is modeled using a finite element implementation of the transient nonlinear 2D Nernst– Planck–Poisson-modified Stern (NPPMS) model. The model uses a modified Stern layer to account for finite ion size. The study includes the eff...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2009-03, Vol.43 (4), p.461-475 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 475 |
---|---|
container_issue | 4 |
container_start_page | 461 |
container_title | Computational mechanics |
container_volume | 43 |
creator | Lim, Jongil Whitcomb, John D. Boyd, James G. Varghese, Julian |
description | A planar electrode containing cylindrical pores with semi-circular ends is modeled using a finite element implementation of the transient nonlinear 2D Nernst– Planck–Poisson-modified Stern (NPPMS) model. The model uses a modified Stern layer to account for finite ion size. The study includes the effects of pore radius and depth on the predicted electric potential, ion concentration, surface charge density, surface energy density, and charging time. The ion concentration and electric potential are found to be sensitive to the change in radii of the pore and insensitive to the pore depth. The surface charge density is slightly higher within the pore than along the vertical flat regions of the electrode. The increase in surface area due to porosity increases the charging time. |
doi_str_mv | 10.1007/s00466-008-0322-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261308570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261308570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4e710e39fd1c9f0f0c0983f30d642068bf6aba0de02d17cdfe4476f22171dc6a3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWC8P4C7gOnqSzCTTpZR6gaKCug7T5KRMnU5qMl3MznfwDX0SU0Zw5er8HL7_HPgIueBwxQH0dQIolGIAFQMpBBsOyIQXUjCYiuKQTIDrimmly2NyktIagJeVLCfEzb1H29PgKbY5xOCQbkNEusKwwT4OdJNXLTq6S023oo8Yu9R_f349t3Vn3_chNCmFjmWu8U0GX_rM0LYeMI7lM3Lk6zbh-e88JW-389fZPVs83T3MbhbMSq56VqDmgHLqHbdTDx4sTCvpJThVCFDV0qt6WYNDEI5r6zwWhVZeCK65s6qWp-RyvLuN4WOHqTfrsItdfmmEUFxCVWrIFB8pG0NKEb3ZxmZTx8FwMHuZZpRpskyzl2mG3BFjJ2W2W2H8u_x_6Qe6t3r2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261308570</pqid></control><display><type>article</type><title>Effect of electrode pore geometry modeled using Nernst–Planck–Poisson-modified Stern layer model</title><source>Springer Nature - Complete Springer Journals</source><creator>Lim, Jongil ; Whitcomb, John D. ; Boyd, James G. ; Varghese, Julian</creator><creatorcontrib>Lim, Jongil ; Whitcomb, John D. ; Boyd, James G. ; Varghese, Julian</creatorcontrib><description>A planar electrode containing cylindrical pores with semi-circular ends is modeled using a finite element implementation of the transient nonlinear 2D Nernst– Planck–Poisson-modified Stern (NPPMS) model. The model uses a modified Stern layer to account for finite ion size. The study includes the effects of pore radius and depth on the predicted electric potential, ion concentration, surface charge density, surface energy density, and charging time. The ion concentration and electric potential are found to be sensitive to the change in radii of the pore and insensitive to the pore depth. The surface charge density is slightly higher within the pore than along the vertical flat regions of the electrode. The increase in surface area due to porosity increases the charging time.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-008-0322-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Charge density ; Charging ; Classical and Continuum Physics ; Computational Science and Engineering ; Electric potential ; Electrodes ; Engineering ; Finite element method ; Flux density ; Ion concentration ; Original Paper ; Porosity ; Surface charge ; Surface energy ; Theoretical and Applied Mechanics ; Two dimensional models</subject><ispartof>Computational mechanics, 2009-03, Vol.43 (4), p.461-475</ispartof><rights>Springer-Verlag 2008</rights><rights>Computational Mechanics is a copyright of Springer, (2008). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4e710e39fd1c9f0f0c0983f30d642068bf6aba0de02d17cdfe4476f22171dc6a3</citedby><cites>FETCH-LOGICAL-c316t-4e710e39fd1c9f0f0c0983f30d642068bf6aba0de02d17cdfe4476f22171dc6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-008-0322-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-008-0322-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lim, Jongil</creatorcontrib><creatorcontrib>Whitcomb, John D.</creatorcontrib><creatorcontrib>Boyd, James G.</creatorcontrib><creatorcontrib>Varghese, Julian</creatorcontrib><title>Effect of electrode pore geometry modeled using Nernst–Planck–Poisson-modified Stern layer model</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>A planar electrode containing cylindrical pores with semi-circular ends is modeled using a finite element implementation of the transient nonlinear 2D Nernst– Planck–Poisson-modified Stern (NPPMS) model. The model uses a modified Stern layer to account for finite ion size. The study includes the effects of pore radius and depth on the predicted electric potential, ion concentration, surface charge density, surface energy density, and charging time. The ion concentration and electric potential are found to be sensitive to the change in radii of the pore and insensitive to the pore depth. The surface charge density is slightly higher within the pore than along the vertical flat regions of the electrode. The increase in surface area due to porosity increases the charging time.</description><subject>Charge density</subject><subject>Charging</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Flux density</subject><subject>Ion concentration</subject><subject>Original Paper</subject><subject>Porosity</subject><subject>Surface charge</subject><subject>Surface energy</subject><subject>Theoretical and Applied Mechanics</subject><subject>Two dimensional models</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtKAzEUhoMoWC8P4C7gOnqSzCTTpZR6gaKCug7T5KRMnU5qMl3MznfwDX0SU0Zw5er8HL7_HPgIueBwxQH0dQIolGIAFQMpBBsOyIQXUjCYiuKQTIDrimmly2NyktIagJeVLCfEzb1H29PgKbY5xOCQbkNEusKwwT4OdJNXLTq6S023oo8Yu9R_f349t3Vn3_chNCmFjmWu8U0GX_rM0LYeMI7lM3Lk6zbh-e88JW-389fZPVs83T3MbhbMSq56VqDmgHLqHbdTDx4sTCvpJThVCFDV0qt6WYNDEI5r6zwWhVZeCK65s6qWp-RyvLuN4WOHqTfrsItdfmmEUFxCVWrIFB8pG0NKEb3ZxmZTx8FwMHuZZpRpskyzl2mG3BFjJ2W2W2H8u_x_6Qe6t3r2</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Lim, Jongil</creator><creator>Whitcomb, John D.</creator><creator>Boyd, James G.</creator><creator>Varghese, Julian</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20090301</creationdate><title>Effect of electrode pore geometry modeled using Nernst–Planck–Poisson-modified Stern layer model</title><author>Lim, Jongil ; Whitcomb, John D. ; Boyd, James G. ; Varghese, Julian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4e710e39fd1c9f0f0c0983f30d642068bf6aba0de02d17cdfe4476f22171dc6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Charge density</topic><topic>Charging</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Flux density</topic><topic>Ion concentration</topic><topic>Original Paper</topic><topic>Porosity</topic><topic>Surface charge</topic><topic>Surface energy</topic><topic>Theoretical and Applied Mechanics</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Jongil</creatorcontrib><creatorcontrib>Whitcomb, John D.</creatorcontrib><creatorcontrib>Boyd, James G.</creatorcontrib><creatorcontrib>Varghese, Julian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Jongil</au><au>Whitcomb, John D.</au><au>Boyd, James G.</au><au>Varghese, Julian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of electrode pore geometry modeled using Nernst–Planck–Poisson-modified Stern layer model</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>43</volume><issue>4</issue><spage>461</spage><epage>475</epage><pages>461-475</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>A planar electrode containing cylindrical pores with semi-circular ends is modeled using a finite element implementation of the transient nonlinear 2D Nernst– Planck–Poisson-modified Stern (NPPMS) model. The model uses a modified Stern layer to account for finite ion size. The study includes the effects of pore radius and depth on the predicted electric potential, ion concentration, surface charge density, surface energy density, and charging time. The ion concentration and electric potential are found to be sensitive to the change in radii of the pore and insensitive to the pore depth. The surface charge density is slightly higher within the pore than along the vertical flat regions of the electrode. The increase in surface area due to porosity increases the charging time.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00466-008-0322-y</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2009-03, Vol.43 (4), p.461-475 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_journals_2261308570 |
source | Springer Nature - Complete Springer Journals |
subjects | Charge density Charging Classical and Continuum Physics Computational Science and Engineering Electric potential Electrodes Engineering Finite element method Flux density Ion concentration Original Paper Porosity Surface charge Surface energy Theoretical and Applied Mechanics Two dimensional models |
title | Effect of electrode pore geometry modeled using Nernst–Planck–Poisson-modified Stern layer model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T13%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20electrode%20pore%20geometry%20modeled%20using%20Nernst%E2%80%93Planck%E2%80%93Poisson-modified%20Stern%20layer%20model&rft.jtitle=Computational%20mechanics&rft.au=Lim,%20Jongil&rft.date=2009-03-01&rft.volume=43&rft.issue=4&rft.spage=461&rft.epage=475&rft.pages=461-475&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-008-0322-y&rft_dat=%3Cproquest_cross%3E2261308570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261308570&rft_id=info:pmid/&rfr_iscdi=true |