An effective approach of adaptive neuro-fuzzy inference system-integrated teaching learning-based optimization for use in machining optimization of S45C CNC turning

This paper proposes an effective integration of the Taguchi method (TM), Adaptive neuro-fuzzy inference system (ANFIS) and Teaching learning-based optimization (TLBO) for CNC turning optimization of S45C carbon steel. The TM plays two main roles: it reduces the number of experiments and identifies t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization and engineering 2019-09, Vol.20 (3), p.811-832
Hauptverfasser: Le Chau, Ngoc, Nguyen, Minh-Quan, Dao, Thanh-Phong, Huang, Shyh-Chour, Hsiao, Te-Ching, Dinh-Cong, Du, Dang, Van Anh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 832
container_issue 3
container_start_page 811
container_title Optimization and engineering
container_volume 20
creator Le Chau, Ngoc
Nguyen, Minh-Quan
Dao, Thanh-Phong
Huang, Shyh-Chour
Hsiao, Te-Ching
Dinh-Cong, Du
Dang, Van Anh
description This paper proposes an effective integration of the Taguchi method (TM), Adaptive neuro-fuzzy inference system (ANFIS) and Teaching learning-based optimization (TLBO) for CNC turning optimization of S45C carbon steel. The TM plays two main roles: it reduces the number of experiments and identifies the most appropriate membership functions (MFs) and suitable learning procedure for the ANFIS. To determine the suitable ANFIS structure, we optimize the root mean squared error, a performance criterion of the ANFIS. Then, taking the established ANFIS structure, we form the virtual mathematical relations between the geometric parameters and the roughness surfaces. The results found that the triangular-shaped MFs and π-shaped MFs are the best for the R a and R z roughness surfaces, respectively. The optimal parameters for ANFIS structure of R a are found in terms of the number of input MFs of 3, the trimf MFs, hybrid learning method, and linear output MFs. The optimal parameters for ANFIS structure of R z are determined at the number of input MFs of 3, the pimf MFs, hybrid learning method, and linear output MFs. Based on the improved ANFIS establishments and optimal parameters of TLBO, the TLBO-based ANFIS is used to optimize the design parameters of the turning. We apply analysis of variance to determine the significant contribution of each factor. The results show a relative decrease in the roughness surfaces compared to those predicted by other algorithms. Therefore, the proposed optimization approach is a robust and effective tool for engineering applications.
doi_str_mv 10.1007/s11081-018-09418-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2260578782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2260578782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-18755f136dc0d593a1bca4742aede37a97b258d2417a33d3489a4decb5cc5e933</originalsourceid><addsrcrecordid>eNp9kctKAzEUhgdRsF5ewFXAdTTXJrOUwRuILtR1SDMndYrN1CQjbZ_HBzVtBXHj5pzD4f-_E_JX1RklF5QQdZkoJZpiQjUmtSh1uVeNqFQcs5qJ_TJzXWMhGDmsjlKaEULHkulR9XUVEHgPLnefgOxiEXvr3lDvkW3tYrsMMMQe-2G9XqEueIgQHKC0ShnmuAsZptFmaFGG4uzCFL2DjaEMeGJT2fcFM-_WNnd9QL6PaEhQQGi-lW8MfxTl9LOQDWoeG5SHLeikOvD2PcHpTz-uXm-uX5o7_PB0e99cPWDHaZ0x1UpKT_m4daSVNbd04qxQgllogStbqwmTumWCKst5y4WurWjBTaRzEmrOj6vzHbf8wscAKZtZX15QThrGxkQqrTQrKrZTudinFMGbRezmNq4MJWaThtmlYUoaZpuGWRYT35lSEYcpxF_0P65v-TeRlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260578782</pqid></control><display><type>article</type><title>An effective approach of adaptive neuro-fuzzy inference system-integrated teaching learning-based optimization for use in machining optimization of S45C CNC turning</title><source>SpringerLink Journals</source><creator>Le Chau, Ngoc ; Nguyen, Minh-Quan ; Dao, Thanh-Phong ; Huang, Shyh-Chour ; Hsiao, Te-Ching ; Dinh-Cong, Du ; Dang, Van Anh</creator><creatorcontrib>Le Chau, Ngoc ; Nguyen, Minh-Quan ; Dao, Thanh-Phong ; Huang, Shyh-Chour ; Hsiao, Te-Ching ; Dinh-Cong, Du ; Dang, Van Anh</creatorcontrib><description>This paper proposes an effective integration of the Taguchi method (TM), Adaptive neuro-fuzzy inference system (ANFIS) and Teaching learning-based optimization (TLBO) for CNC turning optimization of S45C carbon steel. The TM plays two main roles: it reduces the number of experiments and identifies the most appropriate membership functions (MFs) and suitable learning procedure for the ANFIS. To determine the suitable ANFIS structure, we optimize the root mean squared error, a performance criterion of the ANFIS. Then, taking the established ANFIS structure, we form the virtual mathematical relations between the geometric parameters and the roughness surfaces. The results found that the triangular-shaped MFs and π-shaped MFs are the best for the R a and R z roughness surfaces, respectively. The optimal parameters for ANFIS structure of R a are found in terms of the number of input MFs of 3, the trimf MFs, hybrid learning method, and linear output MFs. The optimal parameters for ANFIS structure of R z are determined at the number of input MFs of 3, the pimf MFs, hybrid learning method, and linear output MFs. Based on the improved ANFIS establishments and optimal parameters of TLBO, the TLBO-based ANFIS is used to optimize the design parameters of the turning. We apply analysis of variance to determine the significant contribution of each factor. The results show a relative decrease in the roughness surfaces compared to those predicted by other algorithms. Therefore, the proposed optimization approach is a robust and effective tool for engineering applications.</description><identifier>ISSN: 1389-4420</identifier><identifier>EISSN: 1573-2924</identifier><identifier>DOI: 10.1007/s11081-018-09418-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive systems ; Algorithms ; Artificial neural networks ; Carbon steels ; Control ; Design optimization ; Design parameters ; Engineering ; Environmental Management ; Financial Engineering ; Fuzzy logic ; Fuzzy systems ; Inference ; Learning ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Numerical controls ; Operations Research/Decision Theory ; Optimization ; Research Article ; Robustness (mathematics) ; Roughness ; Systems Theory ; Taguchi methods ; Teaching methods ; Turning (machining) ; Variance analysis</subject><ispartof>Optimization and engineering, 2019-09, Vol.20 (3), p.811-832</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-18755f136dc0d593a1bca4742aede37a97b258d2417a33d3489a4decb5cc5e933</citedby><cites>FETCH-LOGICAL-c319t-18755f136dc0d593a1bca4742aede37a97b258d2417a33d3489a4decb5cc5e933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11081-018-09418-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11081-018-09418-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Le Chau, Ngoc</creatorcontrib><creatorcontrib>Nguyen, Minh-Quan</creatorcontrib><creatorcontrib>Dao, Thanh-Phong</creatorcontrib><creatorcontrib>Huang, Shyh-Chour</creatorcontrib><creatorcontrib>Hsiao, Te-Ching</creatorcontrib><creatorcontrib>Dinh-Cong, Du</creatorcontrib><creatorcontrib>Dang, Van Anh</creatorcontrib><title>An effective approach of adaptive neuro-fuzzy inference system-integrated teaching learning-based optimization for use in machining optimization of S45C CNC turning</title><title>Optimization and engineering</title><addtitle>Optim Eng</addtitle><description>This paper proposes an effective integration of the Taguchi method (TM), Adaptive neuro-fuzzy inference system (ANFIS) and Teaching learning-based optimization (TLBO) for CNC turning optimization of S45C carbon steel. The TM plays two main roles: it reduces the number of experiments and identifies the most appropriate membership functions (MFs) and suitable learning procedure for the ANFIS. To determine the suitable ANFIS structure, we optimize the root mean squared error, a performance criterion of the ANFIS. Then, taking the established ANFIS structure, we form the virtual mathematical relations between the geometric parameters and the roughness surfaces. The results found that the triangular-shaped MFs and π-shaped MFs are the best for the R a and R z roughness surfaces, respectively. The optimal parameters for ANFIS structure of R a are found in terms of the number of input MFs of 3, the trimf MFs, hybrid learning method, and linear output MFs. The optimal parameters for ANFIS structure of R z are determined at the number of input MFs of 3, the pimf MFs, hybrid learning method, and linear output MFs. Based on the improved ANFIS establishments and optimal parameters of TLBO, the TLBO-based ANFIS is used to optimize the design parameters of the turning. We apply analysis of variance to determine the significant contribution of each factor. The results show a relative decrease in the roughness surfaces compared to those predicted by other algorithms. Therefore, the proposed optimization approach is a robust and effective tool for engineering applications.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Carbon steels</subject><subject>Control</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Financial Engineering</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Inference</subject><subject>Learning</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical controls</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Research Article</subject><subject>Robustness (mathematics)</subject><subject>Roughness</subject><subject>Systems Theory</subject><subject>Taguchi methods</subject><subject>Teaching methods</subject><subject>Turning (machining)</subject><subject>Variance analysis</subject><issn>1389-4420</issn><issn>1573-2924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kctKAzEUhgdRsF5ewFXAdTTXJrOUwRuILtR1SDMndYrN1CQjbZ_HBzVtBXHj5pzD4f-_E_JX1RklF5QQdZkoJZpiQjUmtSh1uVeNqFQcs5qJ_TJzXWMhGDmsjlKaEULHkulR9XUVEHgPLnefgOxiEXvr3lDvkW3tYrsMMMQe-2G9XqEueIgQHKC0ShnmuAsZptFmaFGG4uzCFL2DjaEMeGJT2fcFM-_WNnd9QL6PaEhQQGi-lW8MfxTl9LOQDWoeG5SHLeikOvD2PcHpTz-uXm-uX5o7_PB0e99cPWDHaZ0x1UpKT_m4daSVNbd04qxQgllogStbqwmTumWCKst5y4WurWjBTaRzEmrOj6vzHbf8wscAKZtZX15QThrGxkQqrTQrKrZTudinFMGbRezmNq4MJWaThtmlYUoaZpuGWRYT35lSEYcpxF_0P65v-TeRlQ</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Le Chau, Ngoc</creator><creator>Nguyen, Minh-Quan</creator><creator>Dao, Thanh-Phong</creator><creator>Huang, Shyh-Chour</creator><creator>Hsiao, Te-Ching</creator><creator>Dinh-Cong, Du</creator><creator>Dang, Van Anh</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190915</creationdate><title>An effective approach of adaptive neuro-fuzzy inference system-integrated teaching learning-based optimization for use in machining optimization of S45C CNC turning</title><author>Le Chau, Ngoc ; Nguyen, Minh-Quan ; Dao, Thanh-Phong ; Huang, Shyh-Chour ; Hsiao, Te-Ching ; Dinh-Cong, Du ; Dang, Van Anh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-18755f136dc0d593a1bca4742aede37a97b258d2417a33d3489a4decb5cc5e933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Carbon steels</topic><topic>Control</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Financial Engineering</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Inference</topic><topic>Learning</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical controls</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Research Article</topic><topic>Robustness (mathematics)</topic><topic>Roughness</topic><topic>Systems Theory</topic><topic>Taguchi methods</topic><topic>Teaching methods</topic><topic>Turning (machining)</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Chau, Ngoc</creatorcontrib><creatorcontrib>Nguyen, Minh-Quan</creatorcontrib><creatorcontrib>Dao, Thanh-Phong</creatorcontrib><creatorcontrib>Huang, Shyh-Chour</creatorcontrib><creatorcontrib>Hsiao, Te-Ching</creatorcontrib><creatorcontrib>Dinh-Cong, Du</creatorcontrib><creatorcontrib>Dang, Van Anh</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Chau, Ngoc</au><au>Nguyen, Minh-Quan</au><au>Dao, Thanh-Phong</au><au>Huang, Shyh-Chour</au><au>Hsiao, Te-Ching</au><au>Dinh-Cong, Du</au><au>Dang, Van Anh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An effective approach of adaptive neuro-fuzzy inference system-integrated teaching learning-based optimization for use in machining optimization of S45C CNC turning</atitle><jtitle>Optimization and engineering</jtitle><stitle>Optim Eng</stitle><date>2019-09-15</date><risdate>2019</risdate><volume>20</volume><issue>3</issue><spage>811</spage><epage>832</epage><pages>811-832</pages><issn>1389-4420</issn><eissn>1573-2924</eissn><abstract>This paper proposes an effective integration of the Taguchi method (TM), Adaptive neuro-fuzzy inference system (ANFIS) and Teaching learning-based optimization (TLBO) for CNC turning optimization of S45C carbon steel. The TM plays two main roles: it reduces the number of experiments and identifies the most appropriate membership functions (MFs) and suitable learning procedure for the ANFIS. To determine the suitable ANFIS structure, we optimize the root mean squared error, a performance criterion of the ANFIS. Then, taking the established ANFIS structure, we form the virtual mathematical relations between the geometric parameters and the roughness surfaces. The results found that the triangular-shaped MFs and π-shaped MFs are the best for the R a and R z roughness surfaces, respectively. The optimal parameters for ANFIS structure of R a are found in terms of the number of input MFs of 3, the trimf MFs, hybrid learning method, and linear output MFs. The optimal parameters for ANFIS structure of R z are determined at the number of input MFs of 3, the pimf MFs, hybrid learning method, and linear output MFs. Based on the improved ANFIS establishments and optimal parameters of TLBO, the TLBO-based ANFIS is used to optimize the design parameters of the turning. We apply analysis of variance to determine the significant contribution of each factor. The results show a relative decrease in the roughness surfaces compared to those predicted by other algorithms. Therefore, the proposed optimization approach is a robust and effective tool for engineering applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11081-018-09418-x</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1389-4420
ispartof Optimization and engineering, 2019-09, Vol.20 (3), p.811-832
issn 1389-4420
1573-2924
language eng
recordid cdi_proquest_journals_2260578782
source SpringerLink Journals
subjects Adaptive systems
Algorithms
Artificial neural networks
Carbon steels
Control
Design optimization
Design parameters
Engineering
Environmental Management
Financial Engineering
Fuzzy logic
Fuzzy systems
Inference
Learning
Mathematical analysis
Mathematics
Mathematics and Statistics
Numerical controls
Operations Research/Decision Theory
Optimization
Research Article
Robustness (mathematics)
Roughness
Systems Theory
Taguchi methods
Teaching methods
Turning (machining)
Variance analysis
title An effective approach of adaptive neuro-fuzzy inference system-integrated teaching learning-based optimization for use in machining optimization of S45C CNC turning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20effective%20approach%20of%20adaptive%20neuro-fuzzy%20inference%20system-integrated%20teaching%20learning-based%20optimization%20for%20use%20in%20machining%20optimization%20of%20S45C%20CNC%20turning&rft.jtitle=Optimization%20and%20engineering&rft.au=Le%20Chau,%20Ngoc&rft.date=2019-09-15&rft.volume=20&rft.issue=3&rft.spage=811&rft.epage=832&rft.pages=811-832&rft.issn=1389-4420&rft.eissn=1573-2924&rft_id=info:doi/10.1007/s11081-018-09418-x&rft_dat=%3Cproquest_cross%3E2260578782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260578782&rft_id=info:pmid/&rfr_iscdi=true