An effective approach of adaptive neuro-fuzzy inference system-integrated teaching learning-based optimization for use in machining optimization of S45C CNC turning
This paper proposes an effective integration of the Taguchi method (TM), Adaptive neuro-fuzzy inference system (ANFIS) and Teaching learning-based optimization (TLBO) for CNC turning optimization of S45C carbon steel. The TM plays two main roles: it reduces the number of experiments and identifies t...
Gespeichert in:
Veröffentlicht in: | Optimization and engineering 2019-09, Vol.20 (3), p.811-832 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 832 |
---|---|
container_issue | 3 |
container_start_page | 811 |
container_title | Optimization and engineering |
container_volume | 20 |
creator | Le Chau, Ngoc Nguyen, Minh-Quan Dao, Thanh-Phong Huang, Shyh-Chour Hsiao, Te-Ching Dinh-Cong, Du Dang, Van Anh |
description | This paper proposes an effective integration of the Taguchi method (TM), Adaptive neuro-fuzzy inference system (ANFIS) and Teaching learning-based optimization (TLBO) for CNC turning optimization of S45C carbon steel. The TM plays two main roles: it reduces the number of experiments and identifies the most appropriate membership functions (MFs) and suitable learning procedure for the ANFIS. To determine the suitable ANFIS structure, we optimize the root mean squared error, a performance criterion of the ANFIS. Then, taking the established ANFIS structure, we form the virtual mathematical relations between the geometric parameters and the roughness surfaces. The results found that the triangular-shaped MFs and π-shaped MFs are the best for the
R
a
and
R
z
roughness surfaces, respectively. The optimal parameters for ANFIS structure of
R
a
are found in terms of the number of input MFs of 3, the trimf MFs, hybrid learning method, and linear output MFs. The optimal parameters for ANFIS structure of
R
z
are determined at the number of input MFs of 3, the pimf MFs, hybrid learning method, and linear output MFs. Based on the improved ANFIS establishments and optimal parameters of TLBO, the TLBO-based ANFIS is used to optimize the design parameters of the turning. We apply analysis of variance to determine the significant contribution of each factor. The results show a relative decrease in the roughness surfaces compared to those predicted by other algorithms. Therefore, the proposed optimization approach is a robust and effective tool for engineering applications. |
doi_str_mv | 10.1007/s11081-018-09418-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2260578782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2260578782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-18755f136dc0d593a1bca4742aede37a97b258d2417a33d3489a4decb5cc5e933</originalsourceid><addsrcrecordid>eNp9kctKAzEUhgdRsF5ewFXAdTTXJrOUwRuILtR1SDMndYrN1CQjbZ_HBzVtBXHj5pzD4f-_E_JX1RklF5QQdZkoJZpiQjUmtSh1uVeNqFQcs5qJ_TJzXWMhGDmsjlKaEULHkulR9XUVEHgPLnefgOxiEXvr3lDvkW3tYrsMMMQe-2G9XqEueIgQHKC0ShnmuAsZptFmaFGG4uzCFL2DjaEMeGJT2fcFM-_WNnd9QL6PaEhQQGi-lW8MfxTl9LOQDWoeG5SHLeikOvD2PcHpTz-uXm-uX5o7_PB0e99cPWDHaZ0x1UpKT_m4daSVNbd04qxQgllogStbqwmTumWCKst5y4WurWjBTaRzEmrOj6vzHbf8wscAKZtZX15QThrGxkQqrTQrKrZTudinFMGbRezmNq4MJWaThtmlYUoaZpuGWRYT35lSEYcpxF_0P65v-TeRlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260578782</pqid></control><display><type>article</type><title>An effective approach of adaptive neuro-fuzzy inference system-integrated teaching learning-based optimization for use in machining optimization of S45C CNC turning</title><source>SpringerLink Journals</source><creator>Le Chau, Ngoc ; Nguyen, Minh-Quan ; Dao, Thanh-Phong ; Huang, Shyh-Chour ; Hsiao, Te-Ching ; Dinh-Cong, Du ; Dang, Van Anh</creator><creatorcontrib>Le Chau, Ngoc ; Nguyen, Minh-Quan ; Dao, Thanh-Phong ; Huang, Shyh-Chour ; Hsiao, Te-Ching ; Dinh-Cong, Du ; Dang, Van Anh</creatorcontrib><description>This paper proposes an effective integration of the Taguchi method (TM), Adaptive neuro-fuzzy inference system (ANFIS) and Teaching learning-based optimization (TLBO) for CNC turning optimization of S45C carbon steel. The TM plays two main roles: it reduces the number of experiments and identifies the most appropriate membership functions (MFs) and suitable learning procedure for the ANFIS. To determine the suitable ANFIS structure, we optimize the root mean squared error, a performance criterion of the ANFIS. Then, taking the established ANFIS structure, we form the virtual mathematical relations between the geometric parameters and the roughness surfaces. The results found that the triangular-shaped MFs and π-shaped MFs are the best for the
R
a
and
R
z
roughness surfaces, respectively. The optimal parameters for ANFIS structure of
R
a
are found in terms of the number of input MFs of 3, the trimf MFs, hybrid learning method, and linear output MFs. The optimal parameters for ANFIS structure of
R
z
are determined at the number of input MFs of 3, the pimf MFs, hybrid learning method, and linear output MFs. Based on the improved ANFIS establishments and optimal parameters of TLBO, the TLBO-based ANFIS is used to optimize the design parameters of the turning. We apply analysis of variance to determine the significant contribution of each factor. The results show a relative decrease in the roughness surfaces compared to those predicted by other algorithms. Therefore, the proposed optimization approach is a robust and effective tool for engineering applications.</description><identifier>ISSN: 1389-4420</identifier><identifier>EISSN: 1573-2924</identifier><identifier>DOI: 10.1007/s11081-018-09418-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive systems ; Algorithms ; Artificial neural networks ; Carbon steels ; Control ; Design optimization ; Design parameters ; Engineering ; Environmental Management ; Financial Engineering ; Fuzzy logic ; Fuzzy systems ; Inference ; Learning ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Numerical controls ; Operations Research/Decision Theory ; Optimization ; Research Article ; Robustness (mathematics) ; Roughness ; Systems Theory ; Taguchi methods ; Teaching methods ; Turning (machining) ; Variance analysis</subject><ispartof>Optimization and engineering, 2019-09, Vol.20 (3), p.811-832</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-18755f136dc0d593a1bca4742aede37a97b258d2417a33d3489a4decb5cc5e933</citedby><cites>FETCH-LOGICAL-c319t-18755f136dc0d593a1bca4742aede37a97b258d2417a33d3489a4decb5cc5e933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11081-018-09418-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11081-018-09418-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Le Chau, Ngoc</creatorcontrib><creatorcontrib>Nguyen, Minh-Quan</creatorcontrib><creatorcontrib>Dao, Thanh-Phong</creatorcontrib><creatorcontrib>Huang, Shyh-Chour</creatorcontrib><creatorcontrib>Hsiao, Te-Ching</creatorcontrib><creatorcontrib>Dinh-Cong, Du</creatorcontrib><creatorcontrib>Dang, Van Anh</creatorcontrib><title>An effective approach of adaptive neuro-fuzzy inference system-integrated teaching learning-based optimization for use in machining optimization of S45C CNC turning</title><title>Optimization and engineering</title><addtitle>Optim Eng</addtitle><description>This paper proposes an effective integration of the Taguchi method (TM), Adaptive neuro-fuzzy inference system (ANFIS) and Teaching learning-based optimization (TLBO) for CNC turning optimization of S45C carbon steel. The TM plays two main roles: it reduces the number of experiments and identifies the most appropriate membership functions (MFs) and suitable learning procedure for the ANFIS. To determine the suitable ANFIS structure, we optimize the root mean squared error, a performance criterion of the ANFIS. Then, taking the established ANFIS structure, we form the virtual mathematical relations between the geometric parameters and the roughness surfaces. The results found that the triangular-shaped MFs and π-shaped MFs are the best for the
R
a
and
R
z
roughness surfaces, respectively. The optimal parameters for ANFIS structure of
R
a
are found in terms of the number of input MFs of 3, the trimf MFs, hybrid learning method, and linear output MFs. The optimal parameters for ANFIS structure of
R
z
are determined at the number of input MFs of 3, the pimf MFs, hybrid learning method, and linear output MFs. Based on the improved ANFIS establishments and optimal parameters of TLBO, the TLBO-based ANFIS is used to optimize the design parameters of the turning. We apply analysis of variance to determine the significant contribution of each factor. The results show a relative decrease in the roughness surfaces compared to those predicted by other algorithms. Therefore, the proposed optimization approach is a robust and effective tool for engineering applications.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Carbon steels</subject><subject>Control</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Financial Engineering</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Inference</subject><subject>Learning</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical controls</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Research Article</subject><subject>Robustness (mathematics)</subject><subject>Roughness</subject><subject>Systems Theory</subject><subject>Taguchi methods</subject><subject>Teaching methods</subject><subject>Turning (machining)</subject><subject>Variance analysis</subject><issn>1389-4420</issn><issn>1573-2924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kctKAzEUhgdRsF5ewFXAdTTXJrOUwRuILtR1SDMndYrN1CQjbZ_HBzVtBXHj5pzD4f-_E_JX1RklF5QQdZkoJZpiQjUmtSh1uVeNqFQcs5qJ_TJzXWMhGDmsjlKaEULHkulR9XUVEHgPLnefgOxiEXvr3lDvkW3tYrsMMMQe-2G9XqEueIgQHKC0ShnmuAsZptFmaFGG4uzCFL2DjaEMeGJT2fcFM-_WNnd9QL6PaEhQQGi-lW8MfxTl9LOQDWoeG5SHLeikOvD2PcHpTz-uXm-uX5o7_PB0e99cPWDHaZ0x1UpKT_m4daSVNbd04qxQgllogStbqwmTumWCKst5y4WurWjBTaRzEmrOj6vzHbf8wscAKZtZX15QThrGxkQqrTQrKrZTudinFMGbRezmNq4MJWaThtmlYUoaZpuGWRYT35lSEYcpxF_0P65v-TeRlQ</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Le Chau, Ngoc</creator><creator>Nguyen, Minh-Quan</creator><creator>Dao, Thanh-Phong</creator><creator>Huang, Shyh-Chour</creator><creator>Hsiao, Te-Ching</creator><creator>Dinh-Cong, Du</creator><creator>Dang, Van Anh</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190915</creationdate><title>An effective approach of adaptive neuro-fuzzy inference system-integrated teaching learning-based optimization for use in machining optimization of S45C CNC turning</title><author>Le Chau, Ngoc ; Nguyen, Minh-Quan ; Dao, Thanh-Phong ; Huang, Shyh-Chour ; Hsiao, Te-Ching ; Dinh-Cong, Du ; Dang, Van Anh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-18755f136dc0d593a1bca4742aede37a97b258d2417a33d3489a4decb5cc5e933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Carbon steels</topic><topic>Control</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Financial Engineering</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Inference</topic><topic>Learning</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical controls</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Research Article</topic><topic>Robustness (mathematics)</topic><topic>Roughness</topic><topic>Systems Theory</topic><topic>Taguchi methods</topic><topic>Teaching methods</topic><topic>Turning (machining)</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Chau, Ngoc</creatorcontrib><creatorcontrib>Nguyen, Minh-Quan</creatorcontrib><creatorcontrib>Dao, Thanh-Phong</creatorcontrib><creatorcontrib>Huang, Shyh-Chour</creatorcontrib><creatorcontrib>Hsiao, Te-Ching</creatorcontrib><creatorcontrib>Dinh-Cong, Du</creatorcontrib><creatorcontrib>Dang, Van Anh</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Chau, Ngoc</au><au>Nguyen, Minh-Quan</au><au>Dao, Thanh-Phong</au><au>Huang, Shyh-Chour</au><au>Hsiao, Te-Ching</au><au>Dinh-Cong, Du</au><au>Dang, Van Anh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An effective approach of adaptive neuro-fuzzy inference system-integrated teaching learning-based optimization for use in machining optimization of S45C CNC turning</atitle><jtitle>Optimization and engineering</jtitle><stitle>Optim Eng</stitle><date>2019-09-15</date><risdate>2019</risdate><volume>20</volume><issue>3</issue><spage>811</spage><epage>832</epage><pages>811-832</pages><issn>1389-4420</issn><eissn>1573-2924</eissn><abstract>This paper proposes an effective integration of the Taguchi method (TM), Adaptive neuro-fuzzy inference system (ANFIS) and Teaching learning-based optimization (TLBO) for CNC turning optimization of S45C carbon steel. The TM plays two main roles: it reduces the number of experiments and identifies the most appropriate membership functions (MFs) and suitable learning procedure for the ANFIS. To determine the suitable ANFIS structure, we optimize the root mean squared error, a performance criterion of the ANFIS. Then, taking the established ANFIS structure, we form the virtual mathematical relations between the geometric parameters and the roughness surfaces. The results found that the triangular-shaped MFs and π-shaped MFs are the best for the
R
a
and
R
z
roughness surfaces, respectively. The optimal parameters for ANFIS structure of
R
a
are found in terms of the number of input MFs of 3, the trimf MFs, hybrid learning method, and linear output MFs. The optimal parameters for ANFIS structure of
R
z
are determined at the number of input MFs of 3, the pimf MFs, hybrid learning method, and linear output MFs. Based on the improved ANFIS establishments and optimal parameters of TLBO, the TLBO-based ANFIS is used to optimize the design parameters of the turning. We apply analysis of variance to determine the significant contribution of each factor. The results show a relative decrease in the roughness surfaces compared to those predicted by other algorithms. Therefore, the proposed optimization approach is a robust and effective tool for engineering applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11081-018-09418-x</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-4420 |
ispartof | Optimization and engineering, 2019-09, Vol.20 (3), p.811-832 |
issn | 1389-4420 1573-2924 |
language | eng |
recordid | cdi_proquest_journals_2260578782 |
source | SpringerLink Journals |
subjects | Adaptive systems Algorithms Artificial neural networks Carbon steels Control Design optimization Design parameters Engineering Environmental Management Financial Engineering Fuzzy logic Fuzzy systems Inference Learning Mathematical analysis Mathematics Mathematics and Statistics Numerical controls Operations Research/Decision Theory Optimization Research Article Robustness (mathematics) Roughness Systems Theory Taguchi methods Teaching methods Turning (machining) Variance analysis |
title | An effective approach of adaptive neuro-fuzzy inference system-integrated teaching learning-based optimization for use in machining optimization of S45C CNC turning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20effective%20approach%20of%20adaptive%20neuro-fuzzy%20inference%20system-integrated%20teaching%20learning-based%20optimization%20for%20use%20in%20machining%20optimization%20of%20S45C%20CNC%20turning&rft.jtitle=Optimization%20and%20engineering&rft.au=Le%20Chau,%20Ngoc&rft.date=2019-09-15&rft.volume=20&rft.issue=3&rft.spage=811&rft.epage=832&rft.pages=811-832&rft.issn=1389-4420&rft.eissn=1573-2924&rft_id=info:doi/10.1007/s11081-018-09418-x&rft_dat=%3Cproquest_cross%3E2260578782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260578782&rft_id=info:pmid/&rfr_iscdi=true |