Soft inequality constraints in gradient method and fast gradient method for quadratic programming

A quadratic program (QP) with soft inequality constraints with both linear and quadratic costs on constraint violation can be solved with the dual gradient method (GM) or the dual fast gradient method (FGM). The treatment of the constraint violation influences the efficiency and usefulness of the al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization and engineering 2019-09, Vol.20 (3), p.749-767
Hauptverfasser: Perne, Matija, Gerkšič, Samo, Pregelj, Boštjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 767
container_issue 3
container_start_page 749
container_title Optimization and engineering
container_volume 20
creator Perne, Matija
Gerkšič, Samo
Pregelj, Boštjan
description A quadratic program (QP) with soft inequality constraints with both linear and quadratic costs on constraint violation can be solved with the dual gradient method (GM) or the dual fast gradient method (FGM). The treatment of the constraint violation influences the efficiency and usefulness of the algorithm. We improve on the classical way of extending the QP: our novel contribution is that we obtain the solution to the soft-constrained QP without explicitly introducing slack variables. This approach is more efficient than solving the extended QP with GM or FGM and results in a similar algorithm than if the soft constraints were replaced with hard ones. The approach is intended for applications in model predictive control with fast system dynamics, where QPs of this type are solved at every sampling time in the millisecond range.
doi_str_mv 10.1007/s11081-018-9416-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2260578300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2260578300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-8c5e1cda5fad6b8e3eb945a3529a6ce93d3c745fd41c6adb6d9490c439125da03</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4C7gOpr7JEsp3kBwoa5DmmRqSifTJumib2_KCC7E1Tmc81_gA-Ca4FuCcXdXCMGKIEwU0pxIxE7AjIiOIaopP207UxpxTvE5uChljTGRgqoZsO9jX2FMYbe3m1gP0I2p1GxjqqWd4SpbH0OqcAj1a_TQJg97W-qfRz9m2DJ8tjU6uM1jEwxDTKtLcNbbTQlXP3MOPh8fPhbP6PXt6WVx_4oclaoi5UQgzlvRWy-XKrCw1FxYJqi20gXNPHMdF73nxEnrl9JrrrHjTBMqvMVsDm6m3Na924dSzXrc59QqDaUSi04xfFSRSeXyWEoOvdnmONh8MASbI0kzkTSNpDmSNKx56OQpTZtWIf8m_2_6BpsaeD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260578300</pqid></control><display><type>article</type><title>Soft inequality constraints in gradient method and fast gradient method for quadratic programming</title><source>SpringerLink Journals</source><creator>Perne, Matija ; Gerkšič, Samo ; Pregelj, Boštjan</creator><creatorcontrib>Perne, Matija ; Gerkšič, Samo ; Pregelj, Boštjan</creatorcontrib><description>A quadratic program (QP) with soft inequality constraints with both linear and quadratic costs on constraint violation can be solved with the dual gradient method (GM) or the dual fast gradient method (FGM). The treatment of the constraint violation influences the efficiency and usefulness of the algorithm. We improve on the classical way of extending the QP: our novel contribution is that we obtain the solution to the soft-constrained QP without explicitly introducing slack variables. This approach is more efficient than solving the extended QP with GM or FGM and results in a similar algorithm than if the soft constraints were replaced with hard ones. The approach is intended for applications in model predictive control with fast system dynamics, where QPs of this type are solved at every sampling time in the millisecond range.</description><identifier>ISSN: 1389-4420</identifier><identifier>EISSN: 1573-2924</identifier><identifier>DOI: 10.1007/s11081-018-9416-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Constraints ; Control ; Engineering ; Environmental Management ; Financial Engineering ; Mathematics ; Mathematics and Statistics ; Nonlinear programming ; Operations Research/Decision Theory ; Optimization ; Predictive control ; Quadratic programming ; Research Article ; Slack variables ; System dynamics ; Systems Theory</subject><ispartof>Optimization and engineering, 2019-09, Vol.20 (3), p.749-767</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-8c5e1cda5fad6b8e3eb945a3529a6ce93d3c745fd41c6adb6d9490c439125da03</cites><orcidid>0000-0002-7068-663X ; 0000-0002-7791-018X ; 0000-0002-5649-1422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11081-018-9416-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11081-018-9416-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Perne, Matija</creatorcontrib><creatorcontrib>Gerkšič, Samo</creatorcontrib><creatorcontrib>Pregelj, Boštjan</creatorcontrib><title>Soft inequality constraints in gradient method and fast gradient method for quadratic programming</title><title>Optimization and engineering</title><addtitle>Optim Eng</addtitle><description>A quadratic program (QP) with soft inequality constraints with both linear and quadratic costs on constraint violation can be solved with the dual gradient method (GM) or the dual fast gradient method (FGM). The treatment of the constraint violation influences the efficiency and usefulness of the algorithm. We improve on the classical way of extending the QP: our novel contribution is that we obtain the solution to the soft-constrained QP without explicitly introducing slack variables. This approach is more efficient than solving the extended QP with GM or FGM and results in a similar algorithm than if the soft constraints were replaced with hard ones. The approach is intended for applications in model predictive control with fast system dynamics, where QPs of this type are solved at every sampling time in the millisecond range.</description><subject>Algorithms</subject><subject>Constraints</subject><subject>Control</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Financial Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear programming</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Quadratic programming</subject><subject>Research Article</subject><subject>Slack variables</subject><subject>System dynamics</subject><subject>Systems Theory</subject><issn>1389-4420</issn><issn>1573-2924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsP4C7gOpr7JEsp3kBwoa5DmmRqSifTJumib2_KCC7E1Tmc81_gA-Ca4FuCcXdXCMGKIEwU0pxIxE7AjIiOIaopP207UxpxTvE5uChljTGRgqoZsO9jX2FMYbe3m1gP0I2p1GxjqqWd4SpbH0OqcAj1a_TQJg97W-qfRz9m2DJ8tjU6uM1jEwxDTKtLcNbbTQlXP3MOPh8fPhbP6PXt6WVx_4oclaoi5UQgzlvRWy-XKrCw1FxYJqi20gXNPHMdF73nxEnrl9JrrrHjTBMqvMVsDm6m3Na924dSzXrc59QqDaUSi04xfFSRSeXyWEoOvdnmONh8MASbI0kzkTSNpDmSNKx56OQpTZtWIf8m_2_6BpsaeD4</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Perne, Matija</creator><creator>Gerkšič, Samo</creator><creator>Pregelj, Boštjan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-7068-663X</orcidid><orcidid>https://orcid.org/0000-0002-7791-018X</orcidid><orcidid>https://orcid.org/0000-0002-5649-1422</orcidid></search><sort><creationdate>20190915</creationdate><title>Soft inequality constraints in gradient method and fast gradient method for quadratic programming</title><author>Perne, Matija ; Gerkšič, Samo ; Pregelj, Boštjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-8c5e1cda5fad6b8e3eb945a3529a6ce93d3c745fd41c6adb6d9490c439125da03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Constraints</topic><topic>Control</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Financial Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear programming</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Quadratic programming</topic><topic>Research Article</topic><topic>Slack variables</topic><topic>System dynamics</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perne, Matija</creatorcontrib><creatorcontrib>Gerkšič, Samo</creatorcontrib><creatorcontrib>Pregelj, Boštjan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perne, Matija</au><au>Gerkšič, Samo</au><au>Pregelj, Boštjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft inequality constraints in gradient method and fast gradient method for quadratic programming</atitle><jtitle>Optimization and engineering</jtitle><stitle>Optim Eng</stitle><date>2019-09-15</date><risdate>2019</risdate><volume>20</volume><issue>3</issue><spage>749</spage><epage>767</epage><pages>749-767</pages><issn>1389-4420</issn><eissn>1573-2924</eissn><abstract>A quadratic program (QP) with soft inequality constraints with both linear and quadratic costs on constraint violation can be solved with the dual gradient method (GM) or the dual fast gradient method (FGM). The treatment of the constraint violation influences the efficiency and usefulness of the algorithm. We improve on the classical way of extending the QP: our novel contribution is that we obtain the solution to the soft-constrained QP without explicitly introducing slack variables. This approach is more efficient than solving the extended QP with GM or FGM and results in a similar algorithm than if the soft constraints were replaced with hard ones. The approach is intended for applications in model predictive control with fast system dynamics, where QPs of this type are solved at every sampling time in the millisecond range.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11081-018-9416-3</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7068-663X</orcidid><orcidid>https://orcid.org/0000-0002-7791-018X</orcidid><orcidid>https://orcid.org/0000-0002-5649-1422</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1389-4420
ispartof Optimization and engineering, 2019-09, Vol.20 (3), p.749-767
issn 1389-4420
1573-2924
language eng
recordid cdi_proquest_journals_2260578300
source SpringerLink Journals
subjects Algorithms
Constraints
Control
Engineering
Environmental Management
Financial Engineering
Mathematics
Mathematics and Statistics
Nonlinear programming
Operations Research/Decision Theory
Optimization
Predictive control
Quadratic programming
Research Article
Slack variables
System dynamics
Systems Theory
title Soft inequality constraints in gradient method and fast gradient method for quadratic programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20inequality%20constraints%20in%20gradient%20method%20and%20fast%20gradient%20method%20for%20quadratic%20programming&rft.jtitle=Optimization%20and%20engineering&rft.au=Perne,%20Matija&rft.date=2019-09-15&rft.volume=20&rft.issue=3&rft.spage=749&rft.epage=767&rft.pages=749-767&rft.issn=1389-4420&rft.eissn=1573-2924&rft_id=info:doi/10.1007/s11081-018-9416-3&rft_dat=%3Cproquest_cross%3E2260578300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260578300&rft_id=info:pmid/&rfr_iscdi=true