Soft inequality constraints in gradient method and fast gradient method for quadratic programming
A quadratic program (QP) with soft inequality constraints with both linear and quadratic costs on constraint violation can be solved with the dual gradient method (GM) or the dual fast gradient method (FGM). The treatment of the constraint violation influences the efficiency and usefulness of the al...
Gespeichert in:
Veröffentlicht in: | Optimization and engineering 2019-09, Vol.20 (3), p.749-767 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 767 |
---|---|
container_issue | 3 |
container_start_page | 749 |
container_title | Optimization and engineering |
container_volume | 20 |
creator | Perne, Matija Gerkšič, Samo Pregelj, Boštjan |
description | A quadratic program (QP) with soft inequality constraints with both linear and quadratic costs on constraint violation can be solved with the dual gradient method (GM) or the dual fast gradient method (FGM). The treatment of the constraint violation influences the efficiency and usefulness of the algorithm. We improve on the classical way of extending the QP: our novel contribution is that we obtain the solution to the soft-constrained QP without explicitly introducing slack variables. This approach is more efficient than solving the extended QP with GM or FGM and results in a similar algorithm than if the soft constraints were replaced with hard ones. The approach is intended for applications in model predictive control with fast system dynamics, where QPs of this type are solved at every sampling time in the millisecond range. |
doi_str_mv | 10.1007/s11081-018-9416-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2260578300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2260578300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-8c5e1cda5fad6b8e3eb945a3529a6ce93d3c745fd41c6adb6d9490c439125da03</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4C7gOpr7JEsp3kBwoa5DmmRqSifTJumib2_KCC7E1Tmc81_gA-Ca4FuCcXdXCMGKIEwU0pxIxE7AjIiOIaopP207UxpxTvE5uChljTGRgqoZsO9jX2FMYbe3m1gP0I2p1GxjqqWd4SpbH0OqcAj1a_TQJg97W-qfRz9m2DJ8tjU6uM1jEwxDTKtLcNbbTQlXP3MOPh8fPhbP6PXt6WVx_4oclaoi5UQgzlvRWy-XKrCw1FxYJqi20gXNPHMdF73nxEnrl9JrrrHjTBMqvMVsDm6m3Na924dSzXrc59QqDaUSi04xfFSRSeXyWEoOvdnmONh8MASbI0kzkTSNpDmSNKx56OQpTZtWIf8m_2_6BpsaeD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260578300</pqid></control><display><type>article</type><title>Soft inequality constraints in gradient method and fast gradient method for quadratic programming</title><source>SpringerLink Journals</source><creator>Perne, Matija ; Gerkšič, Samo ; Pregelj, Boštjan</creator><creatorcontrib>Perne, Matija ; Gerkšič, Samo ; Pregelj, Boštjan</creatorcontrib><description>A quadratic program (QP) with soft inequality constraints with both linear and quadratic costs on constraint violation can be solved with the dual gradient method (GM) or the dual fast gradient method (FGM). The treatment of the constraint violation influences the efficiency and usefulness of the algorithm. We improve on the classical way of extending the QP: our novel contribution is that we obtain the solution to the soft-constrained QP without explicitly introducing slack variables. This approach is more efficient than solving the extended QP with GM or FGM and results in a similar algorithm than if the soft constraints were replaced with hard ones. The approach is intended for applications in model predictive control with fast system dynamics, where QPs of this type are solved at every sampling time in the millisecond range.</description><identifier>ISSN: 1389-4420</identifier><identifier>EISSN: 1573-2924</identifier><identifier>DOI: 10.1007/s11081-018-9416-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Constraints ; Control ; Engineering ; Environmental Management ; Financial Engineering ; Mathematics ; Mathematics and Statistics ; Nonlinear programming ; Operations Research/Decision Theory ; Optimization ; Predictive control ; Quadratic programming ; Research Article ; Slack variables ; System dynamics ; Systems Theory</subject><ispartof>Optimization and engineering, 2019-09, Vol.20 (3), p.749-767</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-8c5e1cda5fad6b8e3eb945a3529a6ce93d3c745fd41c6adb6d9490c439125da03</cites><orcidid>0000-0002-7068-663X ; 0000-0002-7791-018X ; 0000-0002-5649-1422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11081-018-9416-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11081-018-9416-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Perne, Matija</creatorcontrib><creatorcontrib>Gerkšič, Samo</creatorcontrib><creatorcontrib>Pregelj, Boštjan</creatorcontrib><title>Soft inequality constraints in gradient method and fast gradient method for quadratic programming</title><title>Optimization and engineering</title><addtitle>Optim Eng</addtitle><description>A quadratic program (QP) with soft inequality constraints with both linear and quadratic costs on constraint violation can be solved with the dual gradient method (GM) or the dual fast gradient method (FGM). The treatment of the constraint violation influences the efficiency and usefulness of the algorithm. We improve on the classical way of extending the QP: our novel contribution is that we obtain the solution to the soft-constrained QP without explicitly introducing slack variables. This approach is more efficient than solving the extended QP with GM or FGM and results in a similar algorithm than if the soft constraints were replaced with hard ones. The approach is intended for applications in model predictive control with fast system dynamics, where QPs of this type are solved at every sampling time in the millisecond range.</description><subject>Algorithms</subject><subject>Constraints</subject><subject>Control</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Financial Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear programming</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Quadratic programming</subject><subject>Research Article</subject><subject>Slack variables</subject><subject>System dynamics</subject><subject>Systems Theory</subject><issn>1389-4420</issn><issn>1573-2924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsP4C7gOpr7JEsp3kBwoa5DmmRqSifTJumib2_KCC7E1Tmc81_gA-Ca4FuCcXdXCMGKIEwU0pxIxE7AjIiOIaopP207UxpxTvE5uChljTGRgqoZsO9jX2FMYbe3m1gP0I2p1GxjqqWd4SpbH0OqcAj1a_TQJg97W-qfRz9m2DJ8tjU6uM1jEwxDTKtLcNbbTQlXP3MOPh8fPhbP6PXt6WVx_4oclaoi5UQgzlvRWy-XKrCw1FxYJqi20gXNPHMdF73nxEnrl9JrrrHjTBMqvMVsDm6m3Na924dSzXrc59QqDaUSi04xfFSRSeXyWEoOvdnmONh8MASbI0kzkTSNpDmSNKx56OQpTZtWIf8m_2_6BpsaeD4</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Perne, Matija</creator><creator>Gerkšič, Samo</creator><creator>Pregelj, Boštjan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-7068-663X</orcidid><orcidid>https://orcid.org/0000-0002-7791-018X</orcidid><orcidid>https://orcid.org/0000-0002-5649-1422</orcidid></search><sort><creationdate>20190915</creationdate><title>Soft inequality constraints in gradient method and fast gradient method for quadratic programming</title><author>Perne, Matija ; Gerkšič, Samo ; Pregelj, Boštjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-8c5e1cda5fad6b8e3eb945a3529a6ce93d3c745fd41c6adb6d9490c439125da03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Constraints</topic><topic>Control</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Financial Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear programming</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Quadratic programming</topic><topic>Research Article</topic><topic>Slack variables</topic><topic>System dynamics</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perne, Matija</creatorcontrib><creatorcontrib>Gerkšič, Samo</creatorcontrib><creatorcontrib>Pregelj, Boštjan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perne, Matija</au><au>Gerkšič, Samo</au><au>Pregelj, Boštjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft inequality constraints in gradient method and fast gradient method for quadratic programming</atitle><jtitle>Optimization and engineering</jtitle><stitle>Optim Eng</stitle><date>2019-09-15</date><risdate>2019</risdate><volume>20</volume><issue>3</issue><spage>749</spage><epage>767</epage><pages>749-767</pages><issn>1389-4420</issn><eissn>1573-2924</eissn><abstract>A quadratic program (QP) with soft inequality constraints with both linear and quadratic costs on constraint violation can be solved with the dual gradient method (GM) or the dual fast gradient method (FGM). The treatment of the constraint violation influences the efficiency and usefulness of the algorithm. We improve on the classical way of extending the QP: our novel contribution is that we obtain the solution to the soft-constrained QP without explicitly introducing slack variables. This approach is more efficient than solving the extended QP with GM or FGM and results in a similar algorithm than if the soft constraints were replaced with hard ones. The approach is intended for applications in model predictive control with fast system dynamics, where QPs of this type are solved at every sampling time in the millisecond range.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11081-018-9416-3</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7068-663X</orcidid><orcidid>https://orcid.org/0000-0002-7791-018X</orcidid><orcidid>https://orcid.org/0000-0002-5649-1422</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-4420 |
ispartof | Optimization and engineering, 2019-09, Vol.20 (3), p.749-767 |
issn | 1389-4420 1573-2924 |
language | eng |
recordid | cdi_proquest_journals_2260578300 |
source | SpringerLink Journals |
subjects | Algorithms Constraints Control Engineering Environmental Management Financial Engineering Mathematics Mathematics and Statistics Nonlinear programming Operations Research/Decision Theory Optimization Predictive control Quadratic programming Research Article Slack variables System dynamics Systems Theory |
title | Soft inequality constraints in gradient method and fast gradient method for quadratic programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20inequality%20constraints%20in%20gradient%20method%20and%20fast%20gradient%20method%20for%20quadratic%20programming&rft.jtitle=Optimization%20and%20engineering&rft.au=Perne,%20Matija&rft.date=2019-09-15&rft.volume=20&rft.issue=3&rft.spage=749&rft.epage=767&rft.pages=749-767&rft.issn=1389-4420&rft.eissn=1573-2924&rft_id=info:doi/10.1007/s11081-018-9416-3&rft_dat=%3Cproquest_cross%3E2260578300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260578300&rft_id=info:pmid/&rfr_iscdi=true |